GPLUS EDUCATION			
Date : Time : Marks :			CHEMISTRY
	THE P-BLOCI	K ELEMENTS	
	g. 1 g		
	Single Correct	Answer Type	
1.	The Minerals having silicates chains are collectively	called	
	a) Olivine b) Zircon	c) Pyroxenes	d) Natrolite
2.	Pyrex glass is a mixture of:		
	a) Sodium borosilicate and barium borosilicate		
	b) Sodium silicate and calcium silicate		
	c) Sodium silicate and lead silicate		
	d) Sodium silicate and aluminium borosilicate		
3.	Amorphous boron on burning in air forms:		
	a) B(OH) ₃		
	b) Mixture of B ₂ O ₃ and BN		
	c) Only B ₂ O ₃		
	d) Only BN		
4.	What is the state of hybridization of carbon in fuller	rene?	
	a) sp^2 b) sp^3	c) sp	d) sp^3d
5.	Boron was isolated by:		, ,
	a) Moseley b) Davy	c) Rutherford	d) Moisson
6.	Which reaction cannot give anhydrous AlCl ₃ ?	,	
	a) Heating of AlCl ₃ · 6H ₂ O		
	b) Passing dry HCl over heated aluminium powder	LACITAR	
	c) Passing dry Cl ₂ over heated aluminium powder	LAHUN	
	d) Heating a mixture of alumina and coke in a curre	nt of dry Cl ₂	
7.	An aqueous solution of potash alum gives	J L	
	a) Two types of ions b) Only one type of ion	c) Four types of ion	d) Three types of ions
8.	Which is neutral to litmus?	<i>y y</i> 1	<i>y v</i> 1
	a) ZnO b) SnO	c) CO	d) SiO
9.	Electrolytic reduction of alumina to aluminium by F	•	•
	a) In the presence of NaCl	1	
	b) In the presence of fluorite		
	c) In the presence of cryolite which forms a melt wi	th lower melting temperatu	ıre
	d) In the presence of cryolite which forms a melt wi		
10.	The type of glass used in making lenses and prism is		
	a) Pyrex glass b) Quartz glass	c) Jena glass	d) Flint glass
11.	Solid CO ₂ is used as:	., , 0	, , G
	a) Poison b) Fire extinguisher	c) Refrigerant	d) Artificial respirant
12	Coke is obtained from coal by:	-,	,oidi i oopiidiic
	a) Cracking		
	b) Fractional distillation		

c) Al

c) Destructive distillation

13. The liquid field metal expanding on solidification is

b) Ga

d) None of these

14. Solder is an alloy of

a) Cu

d) Zn

	a) Pb + Sn	b) $Pb + Sn + Zn$	c) Pb+ Zn	d) Sn+ Zn
15.	Graphite is used in nucle	ar reactors:		
	a) As a lubricant	b) As a fuel	c) As moderator	d) None of these
16.	BF ₃ is an example of Lew	vis acid because it behaves a		
	a) Nucleophile	b) Electrophile	c) Free radical	d) lyophilic
17.		*	h carbon atom in graphite?	, , , , , , , , , , , , , , , , , , ,
	a) 0	b) 3	c) 2	d) 1
18.	•	olysis but SiCl ₄ is readily hy		,
		l its octet but silicon can ex		
	· ·	arbon is higher than of silice		
	c) IP of carbon is higher	~		
		and triple bonds but not sil	icon	
19.	Lead pipes are corroded	=		
	a) dil. H ₂ SO ₄	b) Acetic acid	c) conc. H ₂ SO ₄	d) Water
20.	Purification of alumina is	•	, 2 4	,
		ery poor conductor of elect	ricity	
	b) Impure alumina has a		,	
	· -	ot react with the oxidizing a	gent	
	d) It is difficult to purify	-	-0	
21.				
	a) Trigonal	3 37		
	b) Tetragonal			
		ich BO3 units are linked wit	h oxygen	
		ich BO ₃ units are linked by		
22.	Producer gas is a mixture	The last the second sec	O .	
	a) $CO + N_2$	b) CO + H ₂	c) $N_2 + CH_4$	d) $CO + H_2 + N_2$
23.	Which statement is false	-	1.0.771.0.51	, 2 2
		e of hydrogen and carbon m	onoxide	
		cure of carbon monoxide an		
		e of water vapour and hydro	_	
	d) Natural gas consists o	f methane, ethane and gase	ous hydrocarbons	
24.	Bauxite ore is made up o	$f Al_2O_3 + SiO_2 + TiO_2 + Fe$	$_2$ O_3 . This ore is treated with	n conc. NaOH solution at
	500K and 35 bar pressur	e for few hours and filtered	l hot. In the filtrate the spec	ies present, are
	a) NaAl(OH) ₄ only		b) Na ₂ Ti(OH) ₆ only	
	c) NaAl(OH) ₄ and Na ₂ Si	O ₃ both	d) Na ₂ SiO ₃ only	
25.	An element A dissolves b	oth in acid and alkali. It is a	n example of	
	a) Amorphous nature of	A	b) Allotropic nature of A	
	c) Amphoteric nature of	\bar{A}	d) Dimorphic nature of A	
26.	Which melts in boiling w	ater?		
	a) Gun metal	b) Wood's metal	c) Monel metal	d) Bell metal
27.	Hardest element of III A	group of gp.13 is:		
	a) B	b) Ga	c) Al	d) In
28.	Tin cry refers to:			
	a) Conversion of white to	o grey tin		
	b) Tin plating			
	c) Conversion of white to	etrahedral tin to white rhor	nbohedral tin	
	d) Emission of sound wh			
	u) Ellission of Sound wil	ile bending a tin rod		
29.	•	ning of metals is based on th	ne principle of	

	•	e impurity in the moiten st			
	c) Greater mobility of the	pure metal than that of im	purity		
	d) Higher melting point of	f the impurity than that of t	the pure metal		
30.	The hybridization of boro	n atom in orthoboric acid	is:		
	a) <i>sp</i>	b) sp^2	c) sp^3	d) sp^3d	
31.	Which is not an allotrope	of carbon?			
	a) Graphite	b) Diamond	c) Soot	d) Carborundum	
32.	Alum are used as mordan	t in dyeing because			
	a) Dye is adsorbed on Al($OH)_3$ which is deposited or	n fibre in the hydrolysis pro	ocess	
	b) Dye is adsorbed on KO	H formed due to hydrolysis	S		
	c) Both of the above				
	d) None of the above				
33.	Observe the following sta	tements regarding purifica	tion of bauxite		
	I. During Hall's process,	silica is removed as Si (vaj	oour).		
	II. Bauxite ore contamina	ated with Fe_2O_3 is purified	in Baeyer's process.		
	III. During Serpeck's prod	ess, AlN is formed.			
	The correct answer is				
	a) I, II and III are correct		b) Only I and II are correc	t	
	c) Only I and III are corre	ct	d) Only II and III are corre	ect	
34.	Aluminium is not used				
	a) In silvery paints		b) As oxidizer in metallur	gy	
	c) For making utensils d) As a reducing agent				
35.	Molecular weight of anhy	drous aluminium chloride i	is:		
	a) 133.5	b) 267.0	c) 241.5	d) 483.0	
36.	Mg ₂ C ₃ has the following characteristics:				
	a) It is called magnesium allylide				
	b) It contains Mg^{2+} and C_3^{4-} ions c) It on hydrolysis gives propyne				
		ropyne	ATION .		
	d) All of the above				
37.	Newton's alloy contains:				
	a) Bi, Sn, Pb	b) Bi, Fe, Cr	c) Bi, Sn, Cd	d) Pb, Sn, Cd	
38.	, , ,		nile other members show +	-	
		f electron in Tl	b) Large ionic radius of Tl	ion	
	c) Inert pair effect		d) None of the above		
39.	-		al may be strengthened by:		
	a) Galvanizing	b) Cathodizing	c) Sheradizing	d) Anodizing	
40.	Which of the following is	-		12 = (2)	
	a) $Mg(OH)_2$	b) Be(OH) ₂	c) Al(OH) ₃	d) $B(OH)_3$	
41.		resent in the exhaust of car		12 77 1	
4.0	a) Methane	b) Carbon monoxide	c) Acetylene	d) Ethane	
42.		parts purple colour to pott	•	15.74	
40	a) Lead oxide	b) Copper oxide	c) Sodium oxide	d) Manganese dioxide	
43.	The cryolite is:	1237 410) N - 410	D.M. AIR	
	a) NaAlO ₃	b) Na ₃ AlF ₆	c) Na ₃ AlO ₃	d) Na ₂ AlF ₅	
44.			vork arrangement that is si		
4 -	a) Diamond	b) Graphite	c) 0 ₂	d) None of these	
45.	Solid CO ₂ is known as dry	ice, pecause	la) It was alter -+ 0.00		
	a) It evaporates at 40°C	no than 100°C	b) It melts at 0°C	'visith out molting	
	c) Its boiling points is more than 199°C d) It evaporates at '-' 78°C without melting				

46.			state as well as in solution	of non-polar solvents such
	as benzene. When dissolv			
	a) $[Al(OH)_6]^{3-} + 3HCl$	b) $Al_2O_3 + 6HCl$	c) $Al^{3+} + 3Cl^{-}$	d) $[Al(H_2O)_6]^{3+} + 3Cl^{-}$
47.	Hot conc HNO ₃ converts	graphite into		
	a) Graphite oxide		b) Benzene hexacarboxyl	ic acid
	c) Both (a) and (b)		d) None of the above	
48.	Which is correct oxidatio	n state of lead?		
	a) +3, +4	b) +4	c) +1, +2	d) +2, +4
49.	Which of the following is	a three dimensional silicat	e?	
	a) Mica	b) Spodumene	c) Zeolite	d) None of these
50.	Which of the following is	a gas?		
	a) BF ₃	b) BCl ₃	c) BBr ₃	d) BI ₃
51.	Plumbo-solvency means	dissolution of lead in:		
	a) Hot water	b) Acids	c) Ordinary water	d) Alkalies
52.	On doping Ge metal with	a little of ln, one gets:		
	a) <i>p</i> -type semiconductor			
	b) <i>n</i> -type semiconductor			
	c) Insulator			
	d) Rectifier			
53.	Vapour density of which	gas is near to air?		
	a) CO	b) CO ₂	c) NH ₃	d) SO ₂
54.	Muddy water can be puri	fied through coagulation b	y using	
	a) Common salt	b) Alums	c) Sand	d) Lime
55.	The most abundant gas in	n ordinary air among the fo	ollowing is:	
	a) Argon	b) Helium	c) Carbon dioxide	d) Carbon monoxide
56.	Corundum is:			
	a) SiO ₂	b) Al ₂ O ₃	c) CaF ₂	d) Cr_2O_3
57.	Tin dissolves in dilute HN	10_3 forming :	.AHON	
	a) Metastannic acid	b) Nitrous oxide	c) Ammonium nitrate	d) Stannic nitrate
58.	The core of a non-lumino	us Bunsen burner flame is	observed to be yellow in co	olour. This is because of:
	a) Contamination from the	e metal of the burner		
	b) Impurities in the fuel			
	c) Incomplete combustio	n		
	d) None of the above			
59.	The correct order of decr	easing ionic nature of lead	dihalides is:	
	a) $PbF_2 > PbCl_2 > PbBr_2$	$> PbI_2$		
	b) $PbF_2 > PbBr_2 > PbCl_2$	> PbI ₂		
	c) $PbF_2 < PbCl_2 > PbBr_2$	< PbI ₂		
	d) PbI ₂ < PbBr ₂ < PbCl ₂ <	< PbF ₂		
60.	The correct Lewis acid or	der for boron halides is:		
	a) $BF_3 > BCl_3 > BBr_3 >$	BI_3		
	b) $BCl_3 > BF_3 > BBr_3 >$	BI_3		
	c) $BI_3 > BBr_3 > BCl_3 > I$	BF_3		
	d) $BBr_3 > BCl_3 > BI_3 > I$	$3F_3$		
61.	Incomplete combustion of	f petrol or diesel oil in auto	omobile engines can be bes	t detected by testing the
	fuel gases for the presence	e of :		
	a) $CO + H_2O$	b) CO	c) NO ₂	d) SO ₂
62.	Alum is not used:			
	a) As a mordant in dyeing	J		

	b) As an insecticide		
	c) In the purification of water		
	d) In tanning of leather		
63.	$BCl_3 + H_2O \rightarrow X$, the products formed in the reaction	n are	
	a) $B_2O_3 + HOCl$ b) $H_3BO_3 + HCl$	c) $B_2H_6 + HCl$	d) No reaction
64.	Boric acid on heating at 150 °C gives:		
	a) B ₂ O ₃ b) H ₂ B ₄ O ₇	c) HBO ₂	d) H_2BO_3
65.	Which one of the following orders presents the corr	ect sequence of the increas	ing basic nature of the given
	oxides?		
	a) $Al_2O_3 < MgO < Na_2O < K_2O$		
	b) $MgO < K_2O < Al_2O_3 < Na_2O$		
	c) $Na_2O < K_2O < MgO < Al_2O_3$		
	d) $K_2O < Na_2O < Al_2O_3 < MgO$		
66.	Which fuel has the highest calorific value?		
	a) Coal gas b) Water gas	c) Producer gas	d) Carbon dioxide gas
67.	Anodising can be done by electrolyzing dilute H ₂ SO ₂	with Al an anode, this res	_
	a) The formation of protective oxide layer	b) The formation of Al ₂ (S	
	c) The formation of AlH ₃ and SO ₂ gas	d) The formation of Al(H	
68.			20
	a) α- stannic acid. b) Stannous sulphate	c) β – stannic acid	d) Stannic sulphate
69.	The chemical formula of sindhur is	, ,	,
	a) PbO b) Pb ₃ O ₄	c) ZnO	d) SnCl ₂
70.	Aluminium oxide is not reduced by chemical reactio		_
	a) Aluminium oxide is reactive	b) Reducing agents conta	minate
	c) Aluminium oxide is highly stable	d) The process pollutes the	
71.	Aluminium reacts with caustic soda to form		
	a) Aluminium hydroxide	b) Aluminium oxide	
	c) Sodium meta-aluminate	d) Sodium tetra aluminat	e
72.	PbO ₂ on reaction with HNO ₃ gives gas:		
	a) NO ₂ b) O ₂	c) N ₂	d) N ₂ O
73.	When orthoboric acid (H ₃ BO ₃) is heated the residue	e left is:	
	a) Boron b) Metaboric acid	c) Boric anhydride	d) borax
74.	Which is a correct statement about diborane structu	ıre?	
	a) All HBH bond angles are equal	b) All H — B bond lengths	are equal
	c) It has two three-centre-2 electron bonds	d) All hydrogen and boro	n atoms are in one plane
75.	Thermite is a mixture of		
	a) $Cr_2O_3 + Al_2O_3$ b) $Fe_2O_3 + Al$	c) $Fe_2O_3 + Al_2O_3$	d) $Al_2O_3 + 2Cr$
76.	White lead or basic lead carbonate is:		
	a) $Pb(OH)_2 \cdot 2PbCO_3$		
	b) $Pb(OH)_2 \cdot Pb(CH_3COO)_2$		
	c) PbCO ₃		
	d) $PbCO_3 \cdot Pb(OH)_2$		
77.	Cane sugar reacts with conc. HNO ₃ to give :		
	a) CO ₂ and H ₂ O b) Oxalic acid	c) CO and H ₂ O	d) H_2CO_3
78.	Man dies in an atmosphere of carbon monoxide, bed	ause it:	
	a) Combines with the O_2 present in the body to form		
	b) Reduces the organic matter of tissues		
	c) Combines with haemoglobin of blood, making it i	ncapable of absorbing O_2	
	d) Dries up the blood		

79	Which has highest b.p.?				
, ,,	a) Diamond	b) Graphite	c) Charcoal	d) Lamp black	
80.	Carbon cannot be used in	•	•	a) bamp black	
	a) It is an expensive proposition				
	b) The enthalpy of formation of CO_2 is more than that of Al_2O_3				
	c) Pure carbon is not easi				
	d) The enthalpy of format	-			
81.	Which of the following ha				
	a) Pb	b) B	c) Cu	d) Fe	
82.	Which of the following ox			w) 1 0	
·	a) SnO_2	b) SiO ₂	c) CO ₂	d) CaO	
83.	Water gas is produced by	=	o) do ₂	a) sas	
	a) Passing steam through				
	b) Saturating hydrogen w				
	c) Mixing oxygen and hyd				
		$\rm O_2$ and CH $_4$ in petroleum r	efineries		
84.	CO forms a volatile compo				
	a) Nickel	b) Copper	c) Sodium	d) Aluminium	
85.	Red lead is:	, II	,	,	
	a) PbO	b) Pb ₃ O ₄	c) PbO ₂	d) HgS	
86.	The order of acidic streng		, <u>-</u>	, 0	
	a) $BF_3 < BCl_3 < BBr_3 <$	BI_3	b) $BI_3 < BBr_3 < BCl_3 <$	BF_3	
	c) $BCl_3 < BBr_3 < BI_3 < BI_3$		d) $BBr_3 < BCl_3 < BF_3 <$	BI_3	
87.	Heating an aqueous solut	ion of aluminium chloride	to dryness will give:		
	a) AlCl ₃	b) Al ₂ Cl ₆	c) Al_2O_3	d) Al(OH)Cl ₂	
88.	Buckminster fullerene is	1			
	a) Pure graphite	b) C-60	c) Diamond	d) C-90	
89.	Lead (IV) oxide is obtained	ed by :	LAHON		
	a) Heating lead (II) oxide	strongly in air			
	b) Heating lead strongly i	n pure oxygen			
	c) Oxidizing lead with cor	nc. HNO ₃			
	d) Heating Pb ₃ O ₄ with co	nc. HNO ₃			
90.	Graphite is a soft solid lub	oricant extremely difficult	to melt. The reason for this	anomalous behaviour is	
	that, graphite				
	a) Is a non-crystalline sub	ostance			
	b) Is an allotropic from of				
	-	ble molecular masses like			
		nged in large plates of ring	gs of strongly bound carbon	atoms with weak	
	interplate bonds				
91.	The composition of the co	=			
	a) Na ₂ 0. Ca0. 6Si0 ₂		c) CaO.Al ₂ O ₃ .SiO ₂	d) Na ₂ 0. Ca0. 6SiO ₂	
92.	Aluminium becomes pass	ive in nitric acid because i	t:		
	a) Is a noble metal				
	b) Forms a thin film of ox				
	c) Positive reduction pote	ential			
	d) None of the above				
93.	-	stituted silanes the one wh	nich will give rise to cross lin	iked silicone polymer on	
	hydrolysis is	L) PC:CI) n cicl	I) D C:Cl	
	a) R₄Si	b) RSiCl ₂	c) R ₂ SiCl ₂	d) R ₂ SiCl	

94.	The thermal stability of Cl	F₄ is		
	a) Less than SiF ₄	b) More than SiF ₄	c) Less than CCl ₄	d) Less than SiCl ₄
95.			r to give an acidic solution.	
	a) II group	b) IV group	c) VIII group	d) Zero group
96.	· · ·	der for carbon tetra halides	·	a) zere group
, 01	a) $CF_4 > CCl_4 > CBr_4 > C$		5 151	
	b) $CCl_4 > CBr_4 > CI_4 > C$	-		
	c) $CI_4 > CBr_4 > CGl_4 > C$	-		
	d) None of the above	4		
97	An example of a major air	nollutant is:		
<i>)</i> / .	a) Oxygen	b) Carbon dioxide	c) Carbon monoxide	d) Helium
QΩ	Pewter is an alloy of :	b) dai boli dioxide	c) carbon monoxide	a) Hendin
70.	a) Pb and Sn	b) Pb, Sb and Sn	c) Pb, Bi and Sn	d) Pb, Bi, Sn and Cd
00		b) Fb, Sb alla Sli	c) FD, Di aliu Sii	uj Fb, bi, sii aliu Cu
99.	Rose metal is an alloy of.	h) Cn + Cu	a) Cn Ch Cu	d) None of these
100	a) Sn + Pb + Bi	b) Sn + Cu	c) Sn + Sb + Cu	d) None of these
100.	An insulator is:	l-) Cl-!+-	-) Altt	1) D: 1
101	a) Silicon	b) Graphite	c) Aluminium	d) Diamond
101.	Boron nitride on reacting	•) W DO	D MO
100	a) NH ₃	b) N ₂ 0	c) Na ₃ BO ₃	d) NO ₂
102.	The different layers in gra			22.2
	a) Metallic bonding	b) Covalent bonding	c) Ionic bonding	d) Van der Waals' forces
103.	Colemanite is a mineral of		the contract of the contract o	
	a) Mg	b) B	c) Al	d) Mn
104.	Which of the following is a	Sec. 1.40		
	a) Fe ₂ O ₃	b) PbO ₂	c) BaO ₂	d) Pb ₃ O ₄
105.		e unit of weight is carat. Or	_	
	a) 100 mg	b) 300 mg	c) 400 mg	d) 200 mg
106.	Which gas present in atmo	osphere darkens the surfac	e painted by white lead?	
	a) SO ₂	b) NH ₃	c) CO ₂	d) H ₂ S
107.	Which of the following is a	nost abundant in the earth	crust?	
	a) In	b) Ga	c) B	d) Al
108.	Which form of carbon has	a two-dimensional sheet-l	ike structure?	
	a) Coal	b) Coke	c) Diamond	d) Graphite
109.	Extraction of metal from t	he ore cassiterite involves		
	a) Carbon reduction of an	oxide ore	b) Self-reduction of a sulp	hide ore
	c) Removal of copper imp	urity	d) Removal of iron impuri	ty
110.	An alumina-silica clay, cal	led bentonite is dropped fr	om aeroplanes in the slurry	form for:
	a) Fertilizing the soil			
	b) Spreading water over f	ires		
	c) Cooling the soil			
	d) Fumigation			
111.	Gun shots are made of lea	d with a little arsenic. The f	function of As is to increase	:
	a) Range of fire	b) Power of fire	c) Brittleness	d) Weight of fire
112.	The colour of blue glass is	due to the presence of oxid	de of	
	a) Cr	b) Co	c) Au	d) Ag
113.	The glass having smallest	coefficient of thermal expa	nsion is :	
	a) Soda lime glass	b) Soft glass	c) Safety glass	d) Pyrex glass
114.		when silica is heated at hig		-
	a) Carbon	h) Carbon monoxide		d) Calcium carbonate

115. R_3 SiCl on hydrolysis forms:		
a) R_3 SiOH b) R_3 Si $-$ O $-$	$-\operatorname{Si}R_3 \qquad \qquad \text{c) } R_2\operatorname{Si} = 0$	d) None of these
116. Tin plague is the:		
a) Conversion of stannous to stannic		
b) Conversion of white tin to grey tin		
c) Emission of sound while bending a ti	n rod	
d) Atmospheric oxidation of tin		
117. Water glass is:		
a) Calcium silicate		
b) Sodium, calcium silicate		
c) Sodium silicate		
d) Magnesium silicate		
118. If a person is injured by the shot of a gu	n and all the pellets could not be rem	noved, it may cause poisoning
by:	·	
a) Hg b) Pb	c) Fe	d) As
119. Which property is common in diamond	and graphite?	
a) Electrical conductivity		
b) Relative atomic weight		
c) Crystal structure		
d) Density		
120. Carbon dioxide is used for extinguishing	g fire because:	
a) It has a relatively high critical temper		
b) In solid state, it is called dry ice	< 1 >	
c) It is neither combustible nor a suppo	rter of combustion	
d) It is a colourless gas	4	
121. In which of the following the inert pair	effect is most prominent?	
a) Si b) Ge	c) Pb	d) C
122. One recently discovered allotrope of car		•
a) Fluorine b) Fullerene	c) Flourene	d) Freon
123. Which oxide has three dimensional stru	icture?	,
a) CO b) CO ₂	c) SiO ₂	d) SO ₂
124. Diamond and graphite are:		
a) Isomers b) Isotopes	c) allotropes	d) Polymers
125. CO ₂ is called dry ice or drikold because:	-	•
a) It wets the surface		
b) It does not melt		
At atmospheric pressure solid CO ₂ ch	nanges directly into the gas and the li	iquid phase is not formed and
c) does not wet the surface		
d) It is gaseous in nature		
126. Minium is:		
a) PbO b) Pb ₃ O ₄	c) PbO ₂	d) All of these
127. Which of the following is called alum?	· -	•
a) NaAlO ₂		
b) $Na_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$		
c) KCl · MgCl ₂ · $6H_2O$		
d) $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$		
128. The carbon of microphones used in pub	lic address systems is :	
a) Graphite b) Charcoal	c) Coke	d) Lamp black
129 Aluminium is extracted by the electroly	_	-

a) Alumina		b) Bauxite	
c) Molten cryolite		d) Alumina mixed with molten cryolite	
	ion, certain metallic oxides ar	e reduced to the metallic	
a) Metallic magnesiur	n b) Metallic aluminium	c) Metallic iron	d) Sodium metal
131. Formula for agate is			
a) Na ₂ SiO ₃	b) $K_2O.SiO_2.Al_2O_3$	c) SiO ₂	d) CaF ₂
132. Pure CO can be obtain	ned from:		
a) Sodium oxalate			
b) Nickel tetracarbon	yl		
c) Formic acid			
d) Carbon dioxide and			
	manufacture of optical instru		13.7
a) Water glass	b) Pyrex glass	c) Flint glass	d) Jena glass
134. Red liquor is:	12.41(01)) 41 (00)	1) 41 (00.)
a) (CH ₃ COO) ₃ Al	b) Al(OH) ₃	c) $Al_2(CO_3)_3$	d) $Al_2(SO_4)_3$
	limited coordination number		D C
a) Sn	b) C	c) Si	d) Ge
-	used as a precipitating reager	it for Al ³⁺ ions as Al(OH) ₃	rather than aqueous NaOH
because:	_		
a) NH ₄ is a weak base			
b) NaOH is a very stro			
c) NaOH forms [Al(Ol d) NaOH forms [Al(Ol		>	
137. In Goldschmidt alumi		_	
thermite contains	nother fine process,		
a) 3 part of Al_2O_3 , and	d 4 part of Al	b) 3 parts of Fe ₂ O ₃ and	12 parts of Al
	_		
c) 3 parts of Fe_2O_3 are	nd 1 part of Al	d) 1 parts of Fe ₂ O ₃ and	l 1 part of Al
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysis	nd 1 part of Al is of cryolite, aluminium and f	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol	l 1 part of Al ar ratio
 c) 3 parts of Fe₂O₃ are 138. During the electrolysis a) 1:2 	nd 1 part of Al is of cryolite, aluminium and f b) 2:3	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1	l 1 part of Al ar ratio d) 1:3
c) 3 parts of Fe ₂ O ₃ and 138. During the electrolysis a) 1:2 139. Suppose you have to 6	nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample	l 1 part of Al ar ratio d) 1:3
 c) 3 parts of Fe₂O₃ are 138. During the electrolysis a) 1:2 139. Suppose you have to container. Which is the 	nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c ne best absorbing material for	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample	l 1 part of Al lar ratio d) 1:3 e of a gas available in a
 c) 3 parts of Fe₂O₃ are 138. During the electrolysical 1:2 139. Suppose you have to container. Which is the all Heated copper oxide 	nd 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of c ae best absorbing material for de	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium c	l 1 part of Al lar ratio d) 1:3 e of a gas available in a
 c) 3 parts of Fe₂O₃ are 138. During the electrolysical 1:2 139. Suppose you have to container. Which is the alignment of the company of the container of the conta	nd 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of c ae best absorbing material for de	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium o d) Heated charcoal	l 1 part of Al lar ratio d) 1:3 e of a gas available in a hloride
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to econtainer. Which is the a) Heated copper oxide c) Cold, solid calcium 140. The dissolution of Al(nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c ne best absorbing material for de hydroxide	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of d) Heated charcoal	l 1 part of Al lar ratio d) 1:3 e of a gas available in a hloride
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to econtainer. Which is the a) Heated copper oxide c) Cold, solid calcium 140. The dissolution of Al(nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c ne best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄]	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of d) Heated charcoal	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxide c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺	nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c ne best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄]	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of d) Heated charcoal	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxid c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the nare	nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c ne best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium od Heated charcoal esults in the formation of: c) [Al(H ₂ O) ₃ (OH) ₃]	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃]
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to econtainer. Which is the a) Heated copper oxic c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃	nd 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of c ne best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium od Heated charcoal esults in the formation of: c) [Al(H ₂ O) ₃ (OH) ₃]	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃]
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxid c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a	ad 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of come best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH rombon [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃ dirated water? b) SO ₂	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide calcium of the carbon dioxide? c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxid c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂	ad 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of come best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH rombon [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃ dirated water? b) SO ₂	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide calcium of the carbon dioxide? c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxid c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena	ad 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of c ae best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄] me of: b) HPO ₃ airated water? b) SO ₂ f lead?	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide? c) Heated charcoal esults in the formation of: c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxide c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena	and 1 part of Al is of cryolite, aluminium and for b) 2:3 determine the percentage of come best absorbing material for the de hydroxide $[OH)_3$ by a solution of NaOH results b) $[Al(H_2O)_2(OH)_4]^{-1}$ and of: b) $[HPO_3]_{All}$ where $[OH]_{All}$ b) $[OH]_{All}$ and $[OH]_{All}$ b) $[OH]_{All}$ b) $[OH]_{All}$ b) $[OH]_{All}$ flead? b) Anglesite	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide? c) Heated charcoal esults in the formation of: c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours
c) 3 parts of Fe ₂ O ₃ are 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxic c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ 0) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena 144. Borax on heating with	ad 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of come best absorbing material for the de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃ hirated water? b) SO ₂ f lead? b) Anglesite n cobalt oxide forms a blue be b) CoBO ₂	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium od Heated charcoal esults in the formation of: c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine ad of:	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours d) Cerussite
c) 3 parts of Fe ₂ O ₃ ard 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxic c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ 0) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena 144. Borax on heating with a) Co(BO ₂) ₂ 145. Inorganic benzene is: a) BN	ad 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of che best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃ hirated water? b) SO ₂ f lead? b) Anglesite n cobalt oxide forms a blue be b) CoBO ₂	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium od Heated charcoal esults in the formation of: c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine ad of:	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours d) Cerussite
c) 3 parts of Fe ₂ O ₃ ard 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxic c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena 144. Borax on heating with a) Co(BO ₂) ₂ 145. Inorganic benzene is: a) BN 146. The correct formula of	and 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of come best absorbing material for the de a hydroxide b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ the of: b) HPO ₃ the airated water? b) SO ₂ flead? b) Anglesite a cobalt oxide forms a blue be b) CoBO ₂ b) BF ₄ of borax is:	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide? c) Heated charcoal esults in the formation of c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine ad of: c) Co ₃ (BO ₃) ₂	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours d) Cerussite d) Na ₃ Co(BO ₃) ₂
c) 3 parts of Fe ₂ O ₃ ard 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxid c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ 0) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena 144. Borax on heating with a) Co(BO ₂) ₂ 145. Inorganic benzene is: a) BN 146. The correct formula contains and an electric formula contains an electric formula con	and 1 part of Al as of cryolite, aluminium and f b) 2:3 determine the percentage of come best absorbing material for the de a hydroxide b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ the of: b) HPO ₃ the airated water? b) SO ₂ flead? b) Anglesite a cobalt oxide forms a blue be b) CoBO ₂ b) BF ₄ of borax is:	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide? c) Heated charcoal esults in the formation of c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine ad of: c) Co ₃ (BO ₃) ₂	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours d) Cerussite d) Na ₃ Co(BO ₃) ₂
c) 3 parts of Fe ₂ O ₃ ard 138. During the electrolysic a) 1:2 139. Suppose you have to a container. Which is the a) Heated copper oxic c) Cold, solid calcium 140. The dissolution of Al(a) [Al(H ₂ O) ₄ (OH)] ²⁺ 141. Prussic acid is the name a) PH ₃ 142. Which gas is used in a a) CO ₂ 143. Which is not an ore of a) Galena 144. Borax on heating with a) Co(BO ₂) ₂ 145. Inorganic benzene is: a) BN 146. The correct formula of	id 1 part of Al is of cryolite, aluminium and f b) 2:3 determine the percentage of che best absorbing material for de hydroxide (OH) ₃ by a solution of NaOH r b) [Al(H ₂ O) ₂ (OH) ₄] ⁻ me of: b) HPO ₃ hirated water? b) SO ₂ f lead? b) Anglesite n cobalt oxide forms a blue be b) CoBO ₂ b) BF ₄ of borax is: 8H ₂ O	d) 1 parts of Fe ₂ O ₃ and luorine are formed in mol c) 1:1 arbon dioxide in a sample the carbon dioxide? b) Cold, solid calcium of the carbon dioxide? c) Heated charcoal esults in the formation of c) [Al(H ₂ O) ₃ (OH) ₃] c) HCN c) CO c) Calamine ad of: c) Co ₃ (BO ₃) ₂	l 1 part of Al lar ratio d) 1:3 e of a gas available in a chloride d) [Al(H ₂ O) ₆ (OH) ₃] d) HNC d) Water vapours d) Cerussite d) Na ₃ Co(BO ₃) ₂

d) Na ₂ B ₄ O ₇ · 8H ₂ O			
147. The formula of mineral			
a) $Na_2B_4O_7$	b) Na ₂ B ₄ O ₇ . 4H ₂ O	c) $Na_2B_4O_7.5H_2O$	d) $Na_2B_4O_7$. $10H_2O$
148. The hardest compound) D 111	N.D. 1.1.1
a) Boron oxide	b) Boron nitride	c) Boron carbide	d) Boron hydride
-		, ,	mpurity present is a lot iron
	urity present is a lot of silic		
	ocess; for (ii) Baeyer's proce		
	ocess; for (ii) Baeyer's proce	PSS .	
	; for (ii) Serpeck's process		
	cess; for (ii) Serpeck's proce	PSS .	
150. Carbon reacts with con			
a) CO ₂ , SO ₂ , H ₂ O	b) SO ₂ , H ₂ O, CO	c) CO, H ₂ O	d) CO_2 , H_2O
151. Massicot is prepared by			
a) Heating tin in air all	about 300°C		
b) Heating litharge			
c) Heating red lead			
d) Heating lead nitrate			
152. Animal charcoal is used	-	ır because:	
a) It oxidizes coloured			
b) It reduces coloured			
-	material into colourless		
d) It adsorbs coloured			
153. Which is used as disinf	Sec. 1-40		
a) Boric acid	b) Sulphuric acid	c) Phosphorus acid	d) Phosphoric acid
154. Which gas is liberated			
a) CH ₄	b) C ₂ H ₂	c) C ₂ H ₆	d) CO ₂
155. The coal form containing	The same of the sa		
a) Lignite	b) Anthracite	c) Bituminous	d) Peat
156. Water softner is			
a) Borax	b) Zeolite	c) Both (a) And (b)	d) None of these
157. Carbon dioxide is a gas			
al	mposed of discrete covalent	t CO ₂ molecules whereas s	silica has continuous
tetrahedral structur			
	ghter than SiO ₂ molecules		
c) CO ₂ is more acidic th			
d) Melting point of silic	ca is very high		
158. Alums are used for			
a) Tanning of leather	_	c) Purification of water	r d) All of these
159. On heating Al at 800°C		reaction is:	
a) An endothermic rea			
b) An exothermic react			
c) Reduction of alumin	ilum		
d) None of the above			
160. White lead is	13 01 00) PI (277)	D DI GG1 G
a) PbCO ₃ PbO	b) PbCO ₃	c) $Pb(OH)_2$. $2PbCO_3$	d) PbSO ₄ . PbO
161. Hot and conc. HNO_3 real) a v ac	D 110
a) CO ₂	b) CO	c) C ₆ H ₅ COOH	d) $NO_2 + CO_2$
162 Anodised aluminium is	<u>u</u>		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 10

a) Al obtained at anode			
b) Al prepared electrolytically			
c) Alloy of Al containing 95% Al			
d) Al electrolytically coated with a	luminium oxide		
163. AlCl ₃ is			
a) Anhydrous and ionic	b)	Covalent and basic	
c) Anhydrous and covalent		Co-ordinate and acidic	
164. The variety of glass, used for the p			
a) Jena glass b) Safet		Water glass	d) Bottle glass
165. Which of the following is used for		•)
a) SiO ₂ b) Si		SiH ₄	d) SiC
166. Tincal is	-,	4	,
a) Na ₂ CO ₃ . 10H ₂ O b) NaNo	O_2	$Na_2B_4O_7.10H_2O$	d) NaCl
167. Tin (II) fluoride (anhydrous) can b	-	1142240/1101120	u) 11uoi
		Dissolving SnO in HF	d) None of these
168. Which of the following is the corre		•	uj None of these
a) It is an active form of lead		It decomposes into Pb a	and CO.
c) Its molecular formula is Pb ₂ O ₃	-	It decomposes into Pb0	-
169. Potash alum dissolves in water to		it decomposes into i bo	and O ₂
a) Acidic solution of H ₂ SO ₄		Alkaline solution	
		Neutral solution	
c) Acidic solution of HCl		Neutral Solution	
170. Which is the least pure form of car		Mood shareal	d) Animal ahawasal
a) Graphite b) Lam		Wood charcoal	d) Animal charcoal
171. The calorific value of carbon is abo	The same of the sa	47	1) 0.4
a) 7.8 b) 15.6	c)	47	d) 94
172. Aluminium metal is refined by		** 111	12.11
		Hall's process	d) Hoope's process
173. The metal which does not form an			22.5
a) Al b) Fe		Pb	d) Mg
174. Which one of the following metals			
a) C b) Al	-	Zn	d) None of these
175. The incorrect statement/s among			
IV. NCl ₅ does not exist while PCl ₅			
V. Lead prefers to form tetravale:	=		
VI. The three $C - O$ bonds are not	-	te ion.	
VII. Both O_2^+ and NO are paramagn	etic.		
a) I, III and IV			
b) I and IV			
c) II and III			
d) I and III			
176. Which of the following is known as	s inorganic benzene?		
a) Borazine b) Phos	phonitrilicacid c)	Boron nitride	d) p- dichlorobenzene
177. Which element does not exhibit al	lotropy?		
a) C b) Sn	c)	Si	d) Pb
178. Carbon monoxide will not reduce:			
a) Litharge b) Cupr	ic oxide c)	Zinc oxide	d) Ferric oxide
179. Graphite is made by heating coke	with silica for many h	ours in a :	
a) Blast furnace			
h) Blast of steam under pressure			

c) In presence of air		
d) High electric arc furnace		
180. When carbon monoxide is passed over solid causti	c soda heated to 200°C, it fo	rms
a) Na ₂ CO ₃ b) CH ₃ COONa	c) NaHCO ₃	d) HCOONa
181. In purification of bauxite by hall's process		
a) Bauxite ore is fused with Na_2CO_3		
b) Bauxite ore is heated with NaOH solution at 50°	С	
c) Bauxite ore is heated with NaHCO ₃		
d) Bauxite ore is fused with coke and heated at 180	00°C in a current of nitrogen	
182. Which of the following is not a Lewis acid?		
a) SiF ₄ b) FeCl ₃	c) BF ₃	d) C_2H_4
183. Sapphire is a mineral of:	, ,	· - ·
a) Cu b) Zn	c) Al	d) Hg
184. Which is/are fire extinguishers?	,	, 0
a) Dry powder containing sand + NaHCO ₃		
b) NaHCO ₃ + H ₂ SO ₄		
c) Foamite extinguishers containing NaHCO ₃ + Al	a(SO4)a	
d) All of these	2(304)3	
185. Boron nitride has the structure of the type		
a) Graphite type	b) Diamond type	
c) Both diamond and graphite type	d) NaCl type	
	u) Naci type	
186. The structure and hybridization of Si(CH ₃) ₄ is:	a) a stab a dral and d	d) totach odral am3
a) bent, sp b) trigonal, sp^2	c) octahedral, sp^3d	d) tetrahedral, sp^3
187. Al_2O_3 can be converted to anhydrous $AlCl_3$ by heat	ung:	
a) A mixture of Al_2O_3 and carbon in dry Cl_2 gas		
b) Al ₂ O ₃ with Cl ₂ gas		
c) Al_2O_3 with HCl gas d) Al_2O_3 with NaCl in solid state	CATION	
d) Al ₂ U ₃ with NaCl in solid state	CHITOIA	
188. Eka aluminium is:) I I	D 0 1
a) Gallium b) Germanium	c) Indium	d) Scandium
189. Elements of group IV used in semiconductors are	2.01.0	D D GL G
a) C, Si, Ge b) Si, Ge, Sn	c) Si, Ge	d) B, Si, Ge
190. The acid used for etching the glass is:		
a) Sulphuric acid b) Perchloric acid	c) Hydrofluoric acid	d) Aqua-regia
191. The greatest percentage of CO is in:		
a) Coal gas b) Producer gas	c) Water gas	d) Oil gas
192. The process used for purification of bauxite are co		
a) Hoope's process b) Serpeck's process	c) Baeyer's process	d) Electrolytic process
193. Which statement is correct?		
a) BCl ₃ and AlCl ₃ are both Lewis acids and BCl ₃ is	stronger than AlCl ₃	
b) BCl ₃ and AlCl ₃ are both Lewis acids and AlCl ₃ is	stronger than BCl ₃	
c) BCl ₃ and AlCl ₃ are both equally strong Lewis ac	ids	
d) Both BCl ₃ and AlCl ₃ are not Lewis acids		
194. In the electrolysis of alumina, cryolite is added to:		
a) Lower the melting point of alumina		
b) Increase the electrical conductivity		
c) Both (a) and (b)		
d) Remove impurities from alumina		

	a) It has oxidation state o	f + 4	b) It is gas at room tempe	erature
404	c) It forms R_2O_3		d) It forms RX_2	.0 .1
196				ow +3 oxidation state, why?
	a) Presence of lone electr		b) Insert pair effect	
	c) Large ionic radius of T		d) None of the above	
197	. Which of the following ele			
	a) C	b) Ge	c) Bi	d) Sn
198	3. Hydrogen forms a bridge			
	a) Hydrogen peroxide	b) Lithium hydride	c) Diborane	d) Sodium peroxide
199). Which of the following is	a use of alum?		
	a) Making explosives	b) Bleaching clothes	c) Water softening	d) All of these
200). Red lead in an example of	f a/anoxide		
	a) Basic	b) Mixed	c) Super	d) Amphoteric
201	. Carbon monoxide on heat	ting with sulphur gives:		
	a) COS	b) SO ₂	c) SO ₃	d) None of these
202	2. Crystalline varieties of ca	rbon is :		
	a) Graphite	b) Coke	c) Peat	d) Gas carbon
203	B. Formula of felspar is			
	a) $K_2O.Al_2O_3.6SiO_2$		b) K ₂ O ₃ . Al ₂ O ₃ . 6Si ₂ O ₂ . 2I	H ₂ O
	c) Al ₂ O ₃ . 2SiO ₂ . 2H ₂ O		d) 3MgO. 4SiO ₂ . H ₂ O	_
204	I. The ratio of Fe ₂ O ₃ and Al,	in thermite is	, , ,	
	a) 1:3	b) 1:2	c) 3:1	d) None of these
205	5. The relative Lewis acid ch			,
	a) $BI_3 > BBr_3 > BF_3 > B$		b) $BI_3 > BBr_3 > BCl_3 >$	BF_2
	c) $BF_3 > BCl_3 > BBr_3 >$	76	d) $BCl_3 > BF_3 > BI_3 > B$	
206	5. Alum is added to muddy v		4) 243 7 213 7 213 7 2	3
	a) It acts as disinfectant			
	b) It results in coagulation	n of clay and sand	'ΔΤΙΩΝ	
	c) Clay is soluble in alum,		15417-014	
		e which is good for health		
207	7. The reducing agent in the			
207	a) MnO_2	b) BaO ₂	c) Mg	d) Al
208	3. There are two H-bridge b	_		u) Ai
200	a) Only 12 electrons	onus in diborane molecule	because there are.	
	b) 14 electrons			
	•	auired for bonding		
	c) 2 electrons less than re			
200	d) Two electrons more th			
209	Name of structure of silicate	ates in which three oxygen		ea is
	a) Pyrosilicate		b) Sheet silicate	
	c) Linear chain silicate		d) Three dimensional sili	cate
210). Pb reacts with dilute HNC			
	a) NO	b) NH ₄ NO ₃	c) N_2O_5	d) NO ₂
211	Aluminium appears like g			
	a) 90% Cu	b) 50% Ni	c) 90% Sn	d) 50% Co
212	2. Purification of aluminium			
	a) Hoope's process	b) Serpeck's process	c) Hall's process	d) Baeyer's process
213	3. Which of the following is	used in making printer's in	ık, shoe polish, black varnis	sh and paint?
	a) Lamp black	b) Bone black	c) Carbon black	d) None of these
21/	The betteet part of the Du	maan human flama ia.		

	a) Top of the outer zone			
	b) A little below the tip of	the flame		
	c) Above the inner zone			
	d) Blue zone			
215.	In the alumino-thermic pro	ocess, aluminium acts as:		
	a) An oxidizing agent	b) A flux	c) A reduction agent	d) A solder
216.	Diborane reacts with wate	r to form:		
	a) HBO ₂	b) H ₃ BO ₃	c) $H_3BO_3 + H_2$	d) H ₂
217.	The chief impurity present		, , , , , , , , , , , , , , , , , , ,	, .
	a) SiO ₂	b) Fe ₂ O ₃	c) K ₂ SO ₄	d) NaF
218.	Be and Al exhibits many pr	, 2 0		•
	a) Exhibiting amphoteric r	-		
	b) Forming polymeric hyd			
	c) Forming covalent halide			
	d) Exhibiting maximum co			
219.	Borax bead test is respond	= = =		
	a) Divalent metals			
	b) Heavy metals			
	c) Light metals			
	d) Metal which forms color	ured metaborates		
220	A fibrous mineral which ca		s without any damage is	
220.	a) Talc	b) Glass wool	c) Soap stone	d) Asbestos
221	Lead may be replaced from		ej boup stone	uj risbestos
221,	a) Cu	b) Au	c) Ag	d) Mg
222	Unstable lead compounds	Sec. 1.40	c) ng	u) Mg
222,	a) PbCl ₄ , PbBr ₄ and PbI ₄	arc	b) PbCl ₂ , PbBr ₂ and PbI ₂	
	c) PbO, PbO ₂ and Pb ₃ O ₄		d) $PbCl_4^{2-}$, $PbCl_6^{2-}$	
222		SiE roacts with water?	d) I bel ₄ , I bel ₆	
443.	Which acid is formed when		a) H CiE	d) None of these
224	a) H ₂ SO ₄	b) H ₂ SiF ₄	c) H_2SiF_6	d) None of these
224.	Which of the following rea a) $Pb^{2+} + 2e \rightarrow Pb$	ctions occurs at the cathod	ie during the charging of le	au accumulator?
	-			
	b) $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$			
	c) $Pb \rightarrow Pb^{2+} + 2e$. 444 . 202 0		
	d) $PbSO_4 + 2H_2O \rightarrow PbO_2$	_		
225.	The two type of bonds pre			
	a) Ionic	b) Coordinate	c) Hydrogen bridge	d) None of these
226.	Which one shows most pro			
	a) Si	b) Sn	c) Pb	d) C
227.	Which of the following is a			
	a) Galena	b) Calamine	c) Malachite	d) Dolomite
228.	Soldiers of Napolean army			
	the tin buttons of their uni		uttons got converted to gre	ey powder. This
	transformation is related			
	a) An interaction with nitr	ogen of the air at very low	to temperatures	
	b) A change in the partial p	oressure of oxygen in the a	ir	
	c) A change in the crystalli			
	d) An interaction with wat		humid air	
229.	In SiF ₆ ²⁻ and SiCl ₆ ²⁻ which of			
	a) SiF_6^{2-} because of small s	ize of F	b) SiF ₆ ² -because of large s	ize of F

c) SiCl ₆ -because of sm	all size of Cl	d) SiCl ₆ ² -because of lar	ge size of Cl
230. Which of the following	has structure similar to grap	hite?	
a) BN	b) B	c) B ₄ C	d) B_2H_6
231. Tin(II) chloride (anhyd	drous) can be obtained :		
a) By melting tin in an	atmosphere of Cl ₂		
b) By treating tin with	conc. HCl and heating the pro	duct to dryness	
c) By treating tin with	dil. HCl and heating the produ	act to dryness	
d) By treating tin with	HCl(gas)		
232. Which statement is not	t true about potash alum?		
a) Its empirical formul	a is KAl(SO ₄) ₂ · 12H ₂ O		
b) Its aqueous solution	is basic in nature		
c) It is used in dyeing i	ndustries		
d) On heating it melts a	and loses its water of crystalli	zation	
233. Solder is an alloy of :			
a) Pb, Sb and Sn	b) Pb and Sn	c) Pb, Bi and Sn	d) Sn, Sb and Cu
234. The thermal stability o	rder for group 14 halides is:		
a) $GeX_2 < SiX_2 < SnX$	$T_2 < PbX_2$		
b) $SiX_2 < GeX_2 < PbX$	$T_2 < \operatorname{Sn} X_2$		
c) $SiX_2 < GeX_2 < SnX$	$T_2 < PbX_2$		
d) Pb X_2 < Sn X_2 < Ge X_2	$X_2 < \operatorname{Si} X_2$		
235. Mica is chemically:			
a) Potassium alumino	silicate having sheet structure	9	
b) Calcium alumino sili	icate having fibrous structure	P	
c) Calcium magnesium	silicate having three dimens	ional network	
d) Hydrated sodium al	umino silicate having three di	imancional natwork	
aj fiyaracca socialir ar	ullillo silicate liavillg till ee ul	illelisional network	
236. When tin is treated wit		mensional network	
236. When tin is treated wit	th concentrated nitric acid stannous nitrate	b) It is converted into	stannic nitrate
236. When tin is treated with a) It is converted into so c) It is converted into a	th concentrated nitric acid stannous nitrate metastannic acid	b) It is converted into a d) It becomes passive	
236. When tin is treated with a) It is converted into so c) It is converted into a	th concentrated nitric acid stannous nitrate	b) It is converted into a d) It becomes passive	
236. When tin is treated with a) It is converted into a c) It is converted into a 237. An element 'X' which converted into a 237.	th concentrated nitric acid stannous nitrate metastannic acid	b) It is converted into a d) It becomes passive	
 236. When tin is treated with a) It is converted into a c) It is converted into a converted into a	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic	b) It is converted into a d) It becomes passive	
 236. When tin is treated with a) It is converted into a c) It is converted into a converted into a	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by:	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: and self reduction	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
 236. When tin is treated with a) It is converted into a c) It is converted into a converted into a	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: arbon reduction arbon reduction	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
 236. When tin is treated with a) It is converted into a c) It is converted into a converted into a	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: and self reduction arbon reduction	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: and self reduction arbon reduction reduction lectrolysis	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
 236. When tin is treated with a) It is converted into a c) It is converted into a converted into a	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: and self reduction arbon reduction reduction lectrolysis	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: a self reduction arbon reduction freduction lectrolysis s in:	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: and self reduction arbon reduction reduction lectrolysis s in:	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: ad self reduction arbon reduction freduction lectrolysis s in:	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: a self reduction arbon reduction freduction lectrolysis in: K 73K (NO_3) and conc. $H_2SO_4(1:2)$	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a c) It is converted into a converted into a converted into a formula and acid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and a converted into a converted in Self reduction and a converted in Self reducti	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: ad self reduction arbon reduction freduction lectrolysis in: K 73K INO_3 and conc. $H_2SO_4(1:2)$ mically:	b) It is converted into some d) It becomes passive has an outer electronic c) X_2O_3 , acidic	structure s^2p^1 . What is the d) XO_2 , acidic
236. When tin is treated with a) It is converted into a c) It is converted into a converted into a converted into a formula and acid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and converted into a co	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: a self reduction arbon reduction freduction lectrolysis in: K 73K (NO_3) and conc. $H_2SO_4(1:2)$	b) It is converted into s d) It becomes passive has an outer electronic	structure s^2p^1 . What is the
236. When tin is treated with a) It is converted into a c) It is converted into a c) It is converted into a converted into a converted into a formula and acid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and converted into a converted in the converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: a self reduction arbon reduction freduction lectrolysis s in: K 73K INO_3 and conc. $H_2SO_4(1:2)$ mically: b) $Na_2B_4O_7$	b) It is converted into so d) It becomes passive has an outer electronic c) X_2O_3 , acidic	structure s^2p^1 . What is the d) XO_2 , acidic d) $B_2O_3 + NaBO_2$
236. When tin is treated with a) It is converted into a c) It is converted into a c) It is converted into a converted into a converted into a formula and acid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and converted into a converted in a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: and self reduction arbon reduction freduction lectrolysis in: K 73K INO_3 and conc. $H_2SO_4(1:2)$ mically: b) $Na_2B_4O_7$	b) It is converted into some d) It becomes passive has an outer electronic c) X_2O_3 , acidic	structure s^2p^1 . What is the d) XO_2 , acidic
236. When tin is treated with a) It is converted into a c) It is converted into a converted into a second and a cid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and a converted into a converted into a converted and self and self and self and self and converted into a c	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: nd self reduction arbon reduction freduction lectrolysis s in: K 73K $(NO_3$ and conc. $H_2SO_4(1:2)$ nically: b) $Na_2B_4O_7$ b) BH_3NH_3 from borax by the action of:	b) It is converted into so d) It becomes passive has an outer electronic c) X_2O_3 , acidic c) X_2O_3 , acidic c) X_3BO_3 c) X_3BO_3	structure s^2p^1 . What is the d) XO_2 , acidic d) $B_2O_3 + NaBO_2$ d) $B_3O_3 + NaBO_2$
236. When tin is treated with a) It is converted into a c) It is converted into a c) It is converted into a converted into a converted into a second and a cid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and converted into a converted	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: a self reduction arbon reduction freduction lectrolysis s in: K 73K INO_3 and conc. $H_2SO_4(1:2)$ nically: b) $Na_2B_4O_7$ b) BH_3NH_3 from borax by the action of: b) Sodium hydroxide	b) It is converted into so d) It becomes passive has an outer electronic c) X_2O_3 , acidic	structure s^2p^1 . What is the d) XO_2 , acidic d) $B_2O_3 + NaBO_2$
236. When tin is treated with a) It is converted into a c) It is converted into a converted into a second and a cid-base a) XO ₃ , basic 238. Pb and Sn are extracted a) Carbon reduction and a converted into a converted into a converted and self and self and self and self and converted into a c	th concentrated nitric acid stannous nitrate metastannic acid occurs in the first short period character of its oxides? b) X_2O_3 , basic d from their Chief ores by: a self reduction arbon reduction freduction lectrolysis s in: K 73K INO_3 and conc. $H_2SO_4(1:2)$ nically: b) $Na_2B_4O_7$ b) BH_3NH_3 from borax by the action of: b) Sodium hydroxide	b) It is converted into so d) It becomes passive has an outer electronic c) X_2O_3 , acidic c) X_2O_3 , acidic c) X_3BO_3 c) X_3BO_3	structure s^2p^1 . What is the d) XO_2 , acidic d) $B_2O_3 + NaBO_2$ d) $B_3O_3 + NaBO_2$

244. Which one of the following	g statements about the zeo	lites is false?			
a) They are used as cation	exchangers.				
b) They have open structure which enables them to take up small molecules.					
c) Zeolites are aluminosilicates having three dimensional network.					
d) Some of the SiO4 ⁻ units	_				
245. Least stable hydride is :	1 7 1	Ü			
a) Methane	b) Plumbane	c) Silane	d) Stibine		
246. Which member of group 1	•	e, emane	w) 5 e. 2		
a) B	b) Al	c) Ga	d) Tl		
247. Which fuel has the highest	•	c) du	uj II		
a) Charcoal	b) Kerosene	c) Wood	d) Cow dung		
_	•	c) wood	u) cow dung		
248. Lead sulphate is soluble in		-) IX C O /II+	J) N C +1		
a) conc. HNO ₃	b) KMnO ₄ /H ⁺	c) $K_2Cr_2O_7/H^+$	d) None of these		
249. Dry ice is	1) 6 11 1 60)	D. G. H. LAVY		
a) Solid H ₂ O	b) Solid CO ₂	c) Solid N ₂ O ₄	d) Solid NH ₃		
250. Each B $-$ H $-$ B bridge in I		- -			
a) 2 electrons	b) 4 electrons	c) 1 electrons	d) 3 electrons		
251. Which one of the following	g ores is best concentrated	by froth-floatation method	d?		
a) Magnetite	b) Cassiterite	c) Galena	d) Malachite		
252. Which metal is powdered,	suspended in oil and used	as paint?			
a) Fe	b) Sn	c) Ag	d) Al		
253. Aqueous solution of potas	h alum is:				
a) Alkaline	b) Acidic	c) Neutral	d) Soppy		
254. In alumino thermic proces	s, Al is used as				
a) Reducing agent	b) Oxidising agent	c) Catalyst	d) Electrolyte		
255. Coal gas:	, , ,		·		
a) Rurne with a emoky flat	ne				
b) Burns with non-smoky	flame	ATION			
c) Is not used for lighting		15.4 1 V 20.1 A			
d) Is not a good fuel	pui pose				
256. Which halide is least stable	e and has doubtful evisten				
a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄		
257. Carbon suboxide C_3O_2 has		cj sm ₄	u) r b14		
		h) Dant atmostras			
a) Linear structure		b) Bent structure			
c) Trigonal planar structu		d) Distorted tetrahedral s	tructure		
258. On strong heating lead nit	•) DI G. DI G. MG	1) 71 0 110 0		
a) PbO, NO, O ₂	b) PbO, NO, NO ₂	c) PbO ₂ , PbO, NO ₂	d) PbO, NO_2 , O_2		
259. AlI $_3$, when react with CCl $_4$	_				
a) AlCl ₃	b) Cl ₄	c) Al_4C_3	d) Al_2O_3		
260. All alums contain:					
a) One monovalent and or	ie trivalent metal				
b) Both monovalent metal					
c) One divalent and one m	onovalent metal				
d) Both divalent metal					
261. Moderate electrical condu	ctivity is shown by				
a) Silica	b) Graphite	c) Diamond	d) Carborundum		
262. The molecules of aluminiu		•	-		
a) Have no shape	F				
b) Are shaped like a plane	triangle				

c) Are round		
d) Are like randomly broken bricks		
263. The correct order of increasing atomic radii, is		
a) B $<$ Al $<$ Ga b) Ga $<$ Al $<$ B	c) Al $< B < Ga$	d) $B < Ga < Al$
264. Identify the statement that is not correct as far as s		,
a) Each boron atom forms four bonds in diborane	i detaile of diborane is cond	cerneu
b) There are two bridging hydrogen atoms in dibor	ano	
c) The hydrogen atoms are not in the same plane in		
d) All B—H bonds in diborane are similar	diborane	
265. Which of the following is not an ionic trihalide?		
_	a) InE	d) CoE
a) AlF ₃ b) BF ₃	c) InF ₃	d) GaF ₃
266. Identify <i>B</i> in the following reaction,		
$H_4SiO_4 \xrightarrow{1000^{\circ}C} A \xrightarrow{Carbon} B + CO$		
1120 4		
a) Corundum b) Quartz	c) Silica	d) Carborundum
267. The stability of hydrides of carbon family is in the c	rder	
a) $CH_4 > SiH_4 > GeH_4 > SnH_4 > PbH_4$	b) $CH_4 < SiH_4 < GeH_4 <$	$SnH_4 < PbH_4$
c) $CH_4 > SnH_4 > GeH_4 > SiH_4 > PbH_4$	d) None of the above	
268. The number of electrons present in the valency she	ll of group 13:	
a) One b) Two	c) Three	d) Zero
269. The straight chain polymer is formed by:		
a) Hydrolysis of (CH ₃) ₂ SiCl ₂ followed by condensa	tion polymerisation	
b) Hydrolysis of (CH ₃) ₃ SiCl followed by condensat	on polymerisation	
c) Hydrolysis of CH ₃ SiCl ₃ followed by condensation		
d) Hydrolysis of $(CH_3)_4$ Si by addition polymerisati	on	
270. Moissan boron is		
a) Amorphous boron of ultra purity	b) Crystalline boron of u	ltra purity
a) Amorphous boron of ultra purityc) Amorphous boron of low purity	b) Crystalline boron of u d) Crystalline boron of lo	
a) Amorphous boron of ultra purityc) Amorphous boron of low purity271. Which of the boron compound is optically active?		
c) Amorphous boron of low purity		
c) Amorphous boron of low purity 271. Which of the boron compound is optically active?	d) Crystalline boron of lo	ow purity
c) Amorphous boron of low purity271. Which of the boron compound is optically active?a) Boron trifluorideb) Boron anhydride	d) Crystalline boron of lo	ow purity
 c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by 	d) Crystalline boron of lo	ow purity
 c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera 	d) Crystalline boron of loc c) Borosalicylic acid tory furnace	ow purity
 c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace 	d) Crystalline boron of lo c) Borosalicylic acid tory furnace the furnace	ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory furnace	d) Crystalline boron of loc c) Borosalicylic acid tory furnace the furnace rnace	ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverberatory for self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory for 273. Foramtion of in-numberable compounds of carbon	d) Crystalline boron of lo c) Borosalicylic acid tory furnace the furnace rnace is due to its	ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory for 273. Foramtion of in-numberable compounds of carbon a) High reactivity	d) Crystalline boron of loc c) Borosalicylic acid tory furnace the furnace rnace is due to its b) Catenation tendency	ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverberatory for self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory for 273. Foramtion of in-numberable compounds of carbon	d) Crystalline boron of lo c) Borosalicylic acid tory furnace the furnace rnace is due to its	ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverberatory for self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory for the self-self-self-self-self-self-self-self-	d) Crystalline boron of loc c) Borosalicylic acid tory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency	ow purity d) Sodium tetraborate
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory furnace 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity	d) Crystalline boron of loc c) Borosalicylic acid tory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are colors are colors and colors are colors.	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity 275. Boric acid is used in carom boards for smooth gliding	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are got pawns because	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity 275. Boric acid is used in carom boards for smooth glidin a) H ₃ BO ₃ molecules are loosely chemically bonded	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are got pawns because	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity 275. Boric acid is used in carom boards for smooth glidic a) H ₃ BO ₃ molecules are loosely chemically bonded b) Its low density makes it fluffy	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are got pawns because	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity 275. Boric acid is used in carom boards for smooth glidic a) H ₃ BO ₃ molecules are loosely chemically bonded b) Its low density makes it fluffy c) It can be powered to a very small grain size	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are got pawns because	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity 275. Boric acid is used in carom boards for smooth glidin a) H ₃ BO ₃ molecules are loosely chemically bonded b) Its low density makes it fluffy c) It can be powered to a very small grain size d) H-bonding in H ₃ BO ₃ gives it a layered structure	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are got pawns because	ow purity d) Sodium tetraborate ow purity
c) Amorphous boron of low purity 271. Which of the boron compound is optically active? a) Boron trifluoride b) Boron anhydride 272. Extraction of lead by reduction methods is done by a) Adding more galena into reverberatory furnace b) Adding more galena and coke into the reverbera c) Self reduction of oxide from sulphide present in d) Adding more lead sulphate into reverberatory fu 273. Foramtion of in-numberable compounds of carbon a) High reactivity c) Covalent and ionic tendency 274. Moissan boron is a) Amorphous boron of low purity c) Amorphous boron ultra purity 275. Boric acid is used in carom boards for smooth glidic a) H ₃ BO ₃ molecules are loosely chemically bonded b) Its low density makes it fluffy c) It can be powered to a very small grain size	d) Crystalline boron of local colors and colors alicylic acid cory furnace the furnace rnace is due to its b) Catenation tendency d) Different valency b) Crystalline boron of local colors and colors are got pawns because	ow purity d) Sodium tetraborate ow purity

a) Chain silicate		b) Sheet silicate		
c) Cyclic silicate	c) Cyclic silicate		d) Three dimensional network silicate	
278. In aluminates coord	lination number of Al is:			
a) 4	b) 6	c) 3	d) 1	
279. Water as is				
a) $CO + N_2$	b) $CO + CO_2 + CH_4$	c) $CO_2 + N_2$	d) $CO + H_2$	
280. The inert form of ca	rbon is:			
a) Diamond	b) Graphite	c) Coal	d) Charcoal	
281. Calorific value of pr	oducer gas is low because of			
a) High per cent of I		c) High per cent of CO	d) Low per cent of N ₂	
282. Producer gas is the				
a) $CO + N_2$	b) CO + H ₂	c) CO + water vapour	d) $N_2 + CH_4$	
	ing has the minimum heat of dis	ssociation?		
a) $[(CH_3)_3 N \rightarrow BF_3]$				
b) $[(CH_3)_3 N \rightarrow B(C)]$	-			
c) $[(CH_3)_3 N \rightarrow B(C)]$				
d) $[(CH_3)_3 N \rightarrow B(C)]$	-			
284. The most reactive for				
a) Diamond	b) Graphite	c) Coal	d) Charcoal	
	ing compounds has peroxide lin	-	N 919	
a) Pb_2O_3	b) CO ₂	c) PbO ₂	d) SiO ₂	
286. Which is not used as			D. P.L. O	
a) Lead dioxide	b) White lead	c) Lead chromate	d) Pb ₃ O ₄	
287. Aluminium does no	Sec. 1.49) NI	Duno	
a) NaOH	b) HCl	c) N ₂	d) HNO ₃	
	Gerent oxidation states because:			
a) Of its high reactive	ectron	CATION		
a) Of its amphataria	ectron	PHITOIA		
c) Of its amphoteriond) It is a transition r				
•	netai olean army while at Alps during	froazing winter suffered a	carious problem as regards	
	their uniform. White metallic ti			
transformation is re		in buttons got converted to	grey powder. This	
	rystalline structure of tin	h) An interaction with n	itrogen of the air at very low	
a) It change in the c	rystamme structure or tim	temperature	itrogen of the an at very low	
c) A change in the n	artial pressure of oxygen in the	•	rater vapour contained in the	
air	artial pressure of oxygen in the	humid air	ater vapour contained in the	
290. The structure of BF ₃	, is	manna an		
a) Planar triangular		c) Tetrahedral	d) T-shaped	
•	e structure of silicate in which o	-		
a) Three dimension		c) Sheet silicate	d) Pyrosilicate	
•	complex $K_3[Al(C_2O_4)_3]$ is:	,		
a) Potassium alumi				
b) Potassium trioxa				
c) Potassium alumi				
d) Potassium trioxa				
293. CO behaves as				
a) Lewis acid	b) Lewis base	c) Amphoteric oxide	d) None of these	
	of sodium hydroxide solution to			

c) Combines with O d) Combines with ha 307. The structure of dib a) four 2C-2e bonds b) two 2C-2e bonds c) two 2C-2e bonds d) four 2C-2e bonds 308. Borax is: a) Na ₂ B ₄ O ₇ 309. Heating an aqueous a) Al(OH)Cl ₂ 310. Hoope's process is u a) Cu	aemoglobin and makes it incorane contains: ds and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $3C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$ solution of aluminium chloby b) Al_2O_3 ased for the purification of the by Al_2O_3 ing is the electron deficient to Al_2O_3	c) Na ₂ B ₄ O ₇ · 7H ₂ 0 ride to dryness will give c) Al ₂ Cl ₆ he metal c) Zn	d) $Na_2B_4O_7 \cdot 10H_2O$ d) $AlCl_3$ d) Ag d) B_2H_6
c) Combines with 0 d) Combines with had 307. The structure of dib a) four 2C-2e bonds c) two 2C-2e bonds d) four 2C-2e bonds d) four 2C-2e bonds 308. Borax is: a) Na ₂ B ₄ O ₇ 309. Heating an aqueous a) Al(OH)Cl ₂ 310. Hoope's process is used a) Cu 311. Which of the following	orane contains: ds and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $2C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$ solution of aluminium chlor b) Al_2O_3 used for the purification of the by Al_2O_3	c) Na ₂ B ₄ O ₇ · 7H ₂ 0 ride to dryness will give c) Al ₂ Cl ₆ he metal c) Zn molecule?	d) AlCl ₃ d) Ag
c) Combines with O d) Combines with ha 307. The structure of dib a) four 2C-2e bonds b) two 2C-2e bonds c) two 2C-2e bonds d) four 2C-2e bonds 308. Borax is: a) Na ₂ B ₄ O ₇ 309. Heating an aqueous a) Al(OH)Cl ₂ 310. Hoope's process is u a) Cu	orane contains: ds and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $3C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$ solution of aluminium chlor b) Al_2O_3 used for the purification of the	c) Na ₂ B ₄ O ₇ · 7H ₂ 0 ride to dryness will give c) Al ₂ Cl ₆ he metal c) Zn	d) AlCl ₃
c) Combines with 0 d) Combines with had 307. The structure of dib a) four 2C-2e bonds c) two 2C-2e bonds d) four 2C-2e bonds d) four 2C-2e bonds 308. Borax is: a) Na ₂ B ₄ O ₇ 309. Heating an aqueous a) Al(OH)Cl ₂ 310. Hoope's process is used.	orane contains: ds and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $3C-2e$ bonds s and two $2C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$ solution of aluminium chlosused for the purification of the	c) Na₂B₄O ₇ · 7H₂0 ride to dryness will give c) Al₂Cl ₆ he metal	d) AlCl ₃
c) Combines with O d) Combines with ha 307. The structure of dib a) four 2C-2e bond b) two 2C-2e bond c) two 2C-2e bond d) four 2C-2e bond 308. Borax is: a) Na ₂ B ₄ O ₇ 309. Heating an aqueous a) Al(OH)Cl ₂	orane contains: ds and two $3C-2e$ bonds is and two $2C-2e$ bonds is and two $3C-2e$ bonds is and two $2C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$ solution of aluminium chlor b) Al_2O_3	c) Na ₂ B ₄ O ₇ · 7H ₂ 0 ride to dryness will give c) Al ₂ Cl ₆	
c) Combines with 0 d) Combines with had 307. The structure of dib a) four 2C-2e bonds b) two 2C-2e bonds c) two 2C-2e bonds d) four 2C-2e bonds 308. Borax is: a) Na ₂ B ₄ O ₇ 309. Heating an aqueous	orane contains: ds and two $3C-2e$ bonds s and two $2C-2e$ bonds s and two $3C-2e$ bonds s and two $2C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$ solution of aluminium chlos	c) Na ₂ B ₄ O ₇ · 7H ₂ 0	d) Na ₂ B ₄ O ₇ · 10H ₂ O
c) Combines with 0 d) Combines with had 307. The structure of dib a) four 2C-2e bonds c) two 2C-2e bonds d) four 2C-2e bonds d) four 2C-2e bonds 308. Borax is: a) Na ₂ B ₄ O ₇	orane contains: ds and two $3C-2e$ bonds s and two $2C-2e$ bonds s and two $3C-2e$ bonds s and two $2C-2e$ bonds b) $Na_2B_4O_7 \cdot 4H_2O$	c) Na ₂ B ₄ O ₇ · 7H ₂ 0	d) Na ₂ B ₄ O ₇ •10H ₂ O
c) Combines with 0 d) Combines with ha 307. The structure of dib a) four 2C-2e bond b) two 2C-2e bond c) two 2C-2e bond d) four 2C-2e bond	orane contains: ds and two 3C-2e bonds s and two 2C-2e bonds s and two 3C-2e bonds	capable to absorb $ { m O}_{2} $	
c) Combines with O d) Combines with ha 307. The structure of dib a) four 2C-2e bonds b) two 2C-2e bonds c) two 2C-2e bonds	orane contains: ds and two 3C-2e bonds s and two 2C-2e bonds s and two 3C-2e bonds	capable to absorb $ { m O}_{2} $	
c) Combines with 0 d) Combines with ha 307. The structure of dib a) four 2C-2e bond b) two 2C-2e bonds	orane contains: ds and two 3C–2e bonds s and two 2C–2e bonds	capable to absorb $ { m O}_{2} $	
c) Combines with 0 d) Combines with ha 307. The structure of dib a) four 2C-2e bond	orane contains: ds and two 3C–2 <i>e</i> bonds	capable to absorb $ { m O}_{2} $	
c) Combines with Od) Combines with ha307. The structure of dib	orane contains:	capable to absorb 0_2	
c) Combines with Od) Combines with ha	_	capable to absorb 0_2	
c) Combines with 0	aemoglobin and makes it in	capable to absorb $ {\rm O}_{2} $	
	₂ present inside to form CO ₂	2	
b) Dries up the bloo	d		
a) It reduces organi	c matter of tissues		
306. Living in the atmosp	ohere of CO is dangerous be	cause :	
	- calcium aluminates		
c) Magnesium alum			
b) Calcium alumino		0 0/11/011	
a) Silicate of calciun		UCATION	
305. Asbestos is chemica		.,)82
a) FeCl ₂	b) SnCl ₂	c) AlCl ₃	d) MgCl ₂
· ·	g the maximum covalent ch		
a) Acidic	b) Amphoteric	c) Basic	d) Neutral
303. PbO is	$tX_2 < tDX_2$	$a_j \cap b n_2 \setminus b n n_2 \setminus a_i$	$cN_2 \subset StN_2$
c) $SiX_2 < GeX_2 < Si$		d) $PbX_2 < SnX_2 < Ge$	_
a) $GeX_2 < SiX_2 < Si$		b) $SiX_2 < GeX_2 < Pb$	
,	lides of Si, Ge, Sn and Pb inc	•	ence
c) Black turning to		d) None of the above	icy
a) White turning to		b) White turning to g	rev
301. Addition of SnCl ₂ to	•	cj sii	ujīb
a) C	b) Si	c) Sn	d) Pb
a) SiO ₂	b) Si(OH) ₄ tivity among the following i	c) Si(OH) ₂ F ₂	d) H ₂ SiF ₆
299. SiF ₄ gets hydrolysed		-) C:(OII) E	J) II C:F
d) It is used to prepa			
c) It is a powerful or			
•	moglobin in red blood cells		
•	water to give carbonic acid.		
	nt with respect to carbon m		
a) 2.225	b) 3.235	c) 2.15	d) 2.417
297. The refractive index	of diamond is highest amo	-	
207 The refrective index	b) AlO_2^-	c) AlO_2^{3-}	d) Al ₂ O ₃
a) AlO ₂ ³⁺	de is soluble in excess at soc	lium hydroxide forming the	eion
a) AlO ₂ ³⁺	$\upsilon_1 \upsilon_2$	c) H ₂ SO ₄	d) CO
a) AlO ₂ ³⁺	b) SO_2		
296. Aluminium hydroxida) AlO ₂ ³⁺		c) Na ₂ SnO ₃	d) Na ₂ SnO ₂

312.	Which is false in case of b	oric acid(H ₃ BO ₃)?			
	a) It is soluble in hot water	er			
	b) It acts as a tribasic acid	l			
	c) It has a planer structur	е			
	d) It acts as a monobasic				
313.	Bleaching powder on trea				
	a) 0 ₂	b) Cl ₂	c) HCl	d) H ₂	
314.	· -	· -	ombustion of burning magi	· -	
			der some circumstances rea		
		ous. The gas is likely to be		, 0	
	a) Water vapour	b) Nitrogen	c) Carbon dioxide	d) Helium	
315.	= =		\mathfrak{d}_2 . This shows that carbon \mathfrak{d}_3	•	
	a) Two allotropic forms		2		
	b) Two oxidation states				
	c) Two isotopes				
	d) 4 electrons in valency s	shell			
316.	Which compound is solid				
	a) CO ₂	b) NH ₃	c) PH ₃	d) SiO ₂	
317.		er than that of Mg because:		u) 5162	
	a) Atomic size of $Al > Mg$	-			
	b) Al has one electron in η				
	c) Atomic size of Al < Mg				
	d) Not known				
318	•	together the carbon atoms	s in diamond?		
510.	a) Coulombic forces	b) Dipole-dipole forces	c) Van der Waals' forces	d) Covalent forces	
319	Ordinary glass is:	b) bipole dipole forces	ej van der vvaais forces	a) covalent forces	
317.	a) Sodium cilicato				
	b) Copper silicate	PLUS EDU	'ΔΤΙΩΝ		
	c) Calcium silicate	OLTO2 FD 64	SECTION		
	•	nd sodium silicates with sil	ica		
320				ision can be drawn from	
320.	Fluorine is more electronegative than either boron or phosphorus. What conclusion can be drawn from the fact that BF_3 has no dipole moment but PF_3 has?				
	a) BF ₃ is spherically symi				
	b) BF ₃ molecule must be	_			
	, ,	is larger than the atomic ra	adius of P		
		o .	aulus of D		
221	d) The BF ₃ molecule mus	cture of ordinary glass are			
341.		· -	•		
	a) Gypsum, sand and sodi				
	b) Sodium carbonate and				
	c) Sodium carbonate, lim				
222	d) Potassium carbonate,				
322.	The common semiconduc			D 0	
	a) Fe	b) Se	c) Ge	d) C	
323.	Alumina is				
00:	a) Acidic	b) Amphoteric	c) Basic	d) None of these	
324.	In aqueous solution of Ga) 0 01 10	D 0 0 10 7	
00-	a) GaCl ₂ and GaCl ₃	b) Ga and GaCl ₃	c) GaCl ₂ and Ga	d) GaCl ₃ and GaCl ₅	
325.	Which of the following do) pal	1) pp	
	a) BF ₃	b) BH ₃	c) BCl ₃	d) BBr ₃	

326. Sodium oxalate on he	eating with conc. H ₂ SO ₄ give:	S:	
a) CO only	b) CO and CO ₂	c) CO ₂ only	d) SO_2 and SO_3
327. In context with the in	ndustrial preparation of hydr	ogen from water gas ($CO+H_2$), which of the following is
the correct statemen	t?		
a) CO is oxidised to C	O_2 with steam in the present	ce of a catalyst followe	d by absorption of CO ₂ in alkali
b) CO and H ₂ are frac	tionally separated using diff	erences in their densit	ies.
c) CO is removed by	absorption in aqueous Cu ₂ Cl	₂ solution	
d) H ₂ is removed thre	ough occlusion with Pd		
328. In the reaction $B_2 O_3$	+ $C + Cl_2 \rightarrow A + CO$. The A	is	
a) CCl ₂	b) BCl ₃	c) BCl ₂	d) B ₂ Cl ₂
329. In electrolysis of alur	ninium oxide which of the fo	llowing is added to acc	celerate the process
a) Silica	b) Silicate	c) Cryolite	d) Nickel
330. Silicon react with hot	solution of NaOH forming		
a) Si(OH) ₄	b) Si(OH) ₂	c) SiO ₂	d) Na ₂ SiO ₄
331. Silicon is usually four	nd in :		
a) Sand	b) Coal	c) Lime	d) Lime stone
332. Synthetic gas is a mix	cture of:		
a) Steam and carbon	monoxide		
b) Carbon monoxide	and nitrogen		
c) Hydrogen and car	bon monoxide		
d) Hydrogen and met	thane		
333. Lead pipes can be use	ed for:		
a) Soft water	- h	-	
b) Hard water	[24]		
c) Both hard and soft	twater		
d) None of the above			
334. Aluminium is not pre	esent in which of the followin	g mineral?	
a) Cryolite	b) Felspar	c) Fluorspar	d) Mica
335. Diborane does not ur	ndergo cleavage reaction wit	h:	
a) Trimethyl amine	b) Ammonia	c) CO	d) CO ₂
336. Stannous oxide can b	e obtained by:		
a) Heating tin strong	•		
b) Heating meta-stan			
c) Heating tin(II) oxa			
d) None of the above			
337. Sugar of lead is			
a) 2PbSO ₄ · PbO	b) $PbCO_3 \cdot Pb(OH)_2$	c) PbCO ₃	d) (CH ₃ COO) ₂ Pb
	ne of carbon monoxide in pr		
a) 1/2	b) 1/3	c) 1/4	d) 2/3
		carbon dioxide) in pro	oduction of 270 kg of aluminium
metal from bauxite b	•		
(Atomic mass of Al=	•		
a) 180 kg	b) 270 kg	c) 540 kg	d) 90 kg
	lves under pressure in water	to give:	
a) An alkaline solutio	on		
b) An acidic solution			
c) A neutral solution			
d) A highly alkaline s			
341. NaBH ₄ is used in orga	nic chemistry to convert:		

WEB: WWW.GPLUSEDUCATION.ORG

355. BF₃ acts as acid according to:

b) FeS

d) Al_2S_3

c) Flower of sulphur

a) CuS

a) Lewis	b) Bronsted	c) Arrhenius	d) None of these
356. Which is used to produc			
a) Calcium phosphide	b) Sodium carbonate	c) Zinc sulphide	d) Zinc phosphide
357. Alumino-thermy is a pro	cess involving :		
-	a metal by heating with sod		
b) Exothermic reduction	of metal oxides by heating	with sodium	
c) Reduction of oxides o	f a metal by heating with car	bon	
d) None of the above			
358. In extraction of aluminit	•		
a) Fused cryolite with fe	lspar	b) Pure alumina in molte	
c) Fused cryolite with fl	uorspar	d) Pure alumina with bau	ixite and molten cryolite
359. Nickeloy is an alloy cont	aining:		
a) Ni + Cu + Cr	b) $Al + Cu + Cr$	c) Ni + Al + Cu	d) None of these
360. By chlorinating carbon of	lisulphide with chlorine in p	resence of aluminium chlo	ride, we get:
a) Carbon tetrachloride	-	c) Chloral	d) Methylene chloride
361. The element which form	s neutral as well as acidic ox	xides is:	
a) Sn	b) Si	c) C	d) P
362. Carborundum is the com	nmercial name of :		
a) Al_2O_3	b) $Ca(H_2PO_4)_2$	c) H_3PO_4	d) SiC
363. Which is amphoteric cor	npound?		
a) Cr ₂ O ₃	b) Mn_2O_3	c) Al_2O_3	d) Fe_2O_3
364. Which of the following is	s not true about potash alum	1?	
a) Its aqueous solution i	s basic		
b) It is used in dyeing in	dustries		
	its water of crystallization		
d) Its empirical formula	is $KAl(SO_4)_2 \cdot 12H_2O$		
365.	C EDII/	LACITAL	
		ATION	
Y X Y			
Silicate structure unit of			
a) $(Si_4O_{11})_n^{-6n}$	b) $(Si_2O_{11})_n^{-2n}$	c) (Si ₂ O ₃)	d) $(SiO_4)^{-4}$
366. Which of the following g			u) (5104)
a) La_4C_3	b) B ₄ C	c) Al ₄ C ₃	d) Mg_2C_3
367. Which has highest bond		0) 1114 03	a) 1182 03
a) F—F	b) C—C	c) N—N	d) 0—0
368. Which is not correct?	<i>5)</i>		a, o o
a) Ge(OH) ₂ is amphoter	ic		
b) GeCl ₂ is more stable t			
c) GeO ₂ is weakly acidic	400.4		
d) GeCl ₄ in HCl forms [Ge	$2Cl_2l^2$ ion		
369. The purest form of coal i	_		
a) Peat	b) Anthracite	c) Bituminous	d) Lignite
370. On the addition of miner			· -
a) Borodihydride	b) Orthoboric acid	c) Metaboric acid	d) Pyroboric acid
371. Bell metal is an alloy of:		e, metaboric aciu	aj i yroboric aciu
a) Sn + Pb	b) Cu + Sn	c) Sn + Sb	d) None of these
372. The anhydride of carbor		cj su + su	a) None of these
572. The annyuriue of carbor	iic aciu 112603 18:		

373. In Al ₂ Cl ₆ , which statement is incorrect? a) Four Al—Cl bonds are of same length and two of different length b) Six Al—Cl bonds are of same length and two of different length c) The angle Cl—Al—Cl is 110° and 93° d) The angle Al—Cl—Al is 87° 374. Carbon tetrachloride has zero dipole moment because of: a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) 3(30½ b) Si0½ c) C) Si₂0½ d)	a) C ₂ O ₂	b) CO ₂	c) CO	d) Na ₂ CO ₃			
a) Four Al—Cl bonds are of same length and two of different length b) Six Al—Cl bonds are of same length and two of different length c) The angle Cl—Al—Cl is 110° and 93° d) The angle Al—Cl—Al is 87° 374. Carbon tetrachloride has zero dipole moment because of: a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) Si02⁻ b) Si02⁻ c) Si20⁵ c) Al20₃ d) Si20⁵ 376. Diaspora is: a) Al20₃. 2H20 b) Al20₃. 3H20 c) Al20₃ d) Al20₃. H20 377. The main constituents of coal gas are: a) Cl14 + C0 + H2 b) CO2 + C0 + H2 c) CO + CO2 d) CO + N2 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K2SO4, Al2(SO4)₃, 24H2O c) K2SO4, Al2(SO4)₃, 24H2O d) Na2SO4, Al2			,	, , ,			
b) Six Al—Cl bonds are of same length and two of different length c) The angle Cl—Al—Cl is 110° and 93° d) The angle Al—Cl—Al is 87° 374. Carbon tetrachloride has zero dipole moment because of: a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) SiO2⁻ b) SiO4⁻ c) Si₂O5⁻ d) Si₂O5⁻ 376. Diaspora is: a) Al₂O₃. 2H₂O b) Al₂O₃. 3H₂O c) Al₂O₃ d) Al₂O₃. 4P₂O 377. The main constituents of coal gas are: a) Al₂O₃. 2H₂O b) Al₂O₃. 3H₂O c) CO + CO₂ d) CO + N₂ 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO₂ and N₂ are non-supporters of combustion. However, for putting out fires CO₂ is preferred over N₂ because CO₂: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K₂SO₄, Al₂(SO₄)₃, 24H₂O c) K₂SO₄, Al₂(SO₄)₃, 24H₂O c) K₂SO₄, Al₂(SO₄)₃, 24H₂O c) K₂SO₄, Al₂(SO₄)₃, 24H₂O d) Na₂SO₄, Al₂(SO₄)₃, 24H₂O			different length				
c) The angle Cl-Al-Cl is 110° and 93" d) The angle Al-Cl-Al is 87 374. Carbon tetrachloride has zero dipole moment because of: a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) Si02^- b) Si024^- c) Si205^- d) Si205^- d) Si206^- 376. Diaspora is: a) Al ₂ O ₃ . 2H ₂ O b) Al ₂ O ₃ . 3H ₂ O c) Al ₂ O ₃ 377. The main constituents of coal gas are: a) CH ₄ + CO + H ₂ b) CO ₂ + CO + H ₂ c) CO + CO ₂ d) CO + N ₂ 378. Melting point is highest for: a) B b) Al 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO ₂ and N ₂ are non-supporters of combustion. However, for putting out fires CO ₂ is preferred over N ₂ because CO ₂ : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) O ₅ S ₅ , 150° d) J120°, 180°							
A) The angle Al—Cl—Al is 87' 374. Carbon tetrachloride has zero dipole moment because of: a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) SiO2 b) SiO4 c) Si2O5 d) Si2O6 376. Diaspora is: a) Al2O3. 2H2O b) Al2O3. AH2O c) Al2O3 d) Al2O3. H2O 377. The main constituents of coal gas are: a) CH4 + CO + H2 b) CO2 + CO + H2 c) CO + CO2 d) CO + N2 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 880. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2; a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K2SO4. Al2(SO4)3. 24H2O b) K2SO4. Al2(SO4)3. 18H2O c) K2SO4. (NH4)2SO4.18H2O d) Na2SO4. Al2(SO4)3. 18H2O c) K2SO4. (NH4)2SO4.18H2O d) Na2SO4. Al2(SO4)3. 24H2O 384. In diborane the two H = B = H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°		_	g				
374. Carbon tetrachloride has zero dipole moment because of: a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) SiO2 b) SiO4 c) Si205 d) d) SiO27 c) Si205 d) d) Si2067	, ,						
a) Planar structure b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) Si02 ² b) Si04 ² c) Si205 ² d) Si205 ² 376. Diaspora is: a) Al203, 2H20 b) Al203, 3H20 c) Al203 d) Al203, H20 377. The main constituents of coal gas are: a) CH4 + CO + H2 b) CO2 + CO + H2 c) CO + CO2 d) CO + N2 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Cope b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Fitting glass d) All of these 383. The formula of potash alum is a) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O 384. In diborane the two H − B − H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	_		ise of:				
b) Smaller size of C and Cl atoms c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: a) \$10\frac{2}{2}\$ b) \$10\frac{2}{2}\$ c) \$12\cdot 0^67\$ d) \$12\cdot 0^7\$ 376. Diaspora is: a) \$10\cdot 2^7\$ b) \$10\cdot 2^7\$ c) \$12\cdot 0^67\$ d) \$12\cdot 0^7\$ 377. The main constituents of coal gas are: a) \$10\cdot 2^4\$ + CO + H2 b) \$10\cdot 2 + CO + H2 c) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 378. Melting point is highest for: a) \$10\cdot 2 + CO + H2 b) \$10\cdot 2 + CO + H2 c) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 378. Melting point is highest for: a) \$10\cdot 2 + CO + H2 c) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 380. CO2 and \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 381. Solar is an aliture of steam and air over incandescent coke d) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 381. Solder is an alloy of lead with a) \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO + N2\$ 382. \$10\cdot 2 + CO2 and \$10\cdot 2 + CO + CO2 d) \$10\cdot 2 + CO2							
c) Regular tetrahedral structure d) None of the above 375. Pyrosilicate ion is: c) Si2067 d) Si2076 376. Diaspora is: c) Si2067 d) Si2076 376. Diaspora is: a) Al203. 2H20 b) Al203. 3H20 c) Al203 d) Al203. H20 377. The main constituents of coal gas are: a) CH4 + CO + H2 b) CO2 + CO4 d) CO + N2 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke d) In b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke c) Passing a mixture of steam and air over incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas st. Solder is an alloy of lead with a) Cooper b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass <t< td=""><td></td><td>atoms</td><td></td><td></td></t<>		atoms					
375. Pyrosilicate ion is: a) SiO2 376. Disspora is: a) SiO2 377. The main constituents of coal gas are: a) CH4 + CO + H2 b) CO2 + CO + H2 c) C) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas. 381. Solder is an alloy of lead withal and of pyrex glass 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) R ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ ∪ c) R ₂ SO ₄ , (NH ₄) ₂ SO ₉ , 18H ₂ ∪ c) R ₂ SO ₄ , (NH ₄) ₂ SO ₉ , 18H ₂ ∪ c) R ₂ SO ₄ , (NH ₄) ₂ SO ₉ , 18H ₂ ∪ c) R ₂ SO ₄ , (NH ₄) ₂ SO ₉ , 18D ₇ c) 95°, 150° d) 120°, 180°	-						
375. Pyrosilicate ion is: a) SiO227	, ,	ucture					
a) SiO2− b) SiO2− c) SiO2− c) Si2O5− d) Si2O6− d) Si2O6− 376. Diaspora is: a) Al₂O3, 2H₂O b) Al₂O3, 3H₂O c) Al₂O3 d) Al₂O3, H₂O 377. The main constituents of coal gas are: a) CH₄ + CO + H₂ b) CO₂ + CO + H₂ c) CO + CO₂ d) CO + N₂ 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incardescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO₂ and N₂ are non-supporters of combustion. However, for putting out fires CO₂ is preferred over N₂ because CO₂: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K₂SO₄, Al₂(SO₄)₃, 24H₂O c) B) K₂SO₄, Al₂(SO₄)₃, 18H₂O c) C) K₂SO₄, (NH₄)₂SO₄, 12O° b) S⁵, 12O° c) 95°, 15O° d) 12O°, 18O°	-						
376. Diaspora is: a) Al ₂ O ₃ . 2H ₂ O b) Al ₂ O ₃ . 3H ₂ O c) Al ₂ O ₃ d) Al ₂ O ₃ . H ₂ O 377. The main constituents of coal gas are: a) CH ₄ + CO + H ₂ b) CO ₂ + CO + H ₂ c) CO + CO ₂ d) CO + N ₂ 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incardescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO ₂ and N ₂ are non-supporters of combustion. However, for putting out fires CO ₂ is preferred over N ₂ because CO ₂ : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O c) S ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H		h) SiO ² -	c) Si ₂ O ⁶	d) Si ₂ O ⁷ =			
a) Al₂0₃. 2H₂0 b) Al₂0₃. 3H₂0 c) Al₂0₃ d) Al₂0₃. H₂0 377. The main constituents of coal gas are: a) CH₄ + CO + H₂ b) CO₂ + CO + H₂ c) CO + CO₂ d) CO + N₂ 378. Melting point is highest 500 c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO₂ and N₂ are non-supporters of combustion. However, for putting out fires CO₂ is preferred over N₂ because CO₂: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alums a) K₂SO₄. Al₂(SO₄)₃. 24H₂O₁ c) K₂SO₄. (NH₄)₂SO₄. 18H₂O₁ c) K₂SO₄. (NH₄)₂SO₄. 18H₂O₁ d) Na₂SO₄. Al₂(SO₄)₃. 24H₂O 384. In diborane the two H → B → H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	-	b) 510 ₄	c) 31 ₂ 0 ₇	u) 51206			
377. The main constituents of coal gas are: a) CH ₄ + CO + H ₂ b) CO ₂ + CO + H ₂ c) CO + CO ₂ d) CO + N ₂ 378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO ₂ and N ₂ are non-supporters of combustion. However, for putting out fires CO ₂ is preferred over N ₂ because CO ₂ : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitroger d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O c) B O ² , 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	•	P) VI U 2H U	a) A1 O	4) 4) 0 4 0			
a) CH ₄ + CO + H ₂ b) CO ₂ + CO + H ₂ c) CO + CO ₂ d) CO + N ₂ 378. Melting point is highest formula of points is highest formula of potash alum is a log of conducting point is highest formula of potash alum is a log of conducting point is highest formula of potash alum is a log of conducting point is highest formula of conducting point is highest formula of potash alum is a log of conducting point is highest formula of conducting point in the conducting point is highest formula of potash alum is a) K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂ O c) K ₂ SO ₄ . (NH ₄) ₂ SO ₄ . 18H ₂ O d) Na ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂ O 384. In diborane the two H − B − H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°		, - , -	C) A12O3	u) Al ₂ O ₃ , H ₂ O			
378. Melting point is highest for: a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO ₂ and N ₂ are non-supporters of combustion. However, for putting out fires CO ₂ is preferred over N ₂ because CO ₂ : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitroged Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O b) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O 384. In diborane the two H – B – H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°		~	a) CO + CO	4) CO + N			
a) B b) Al c) Ga d) In 379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K2SO4. Al2(SO4)3. 24H2O c) K2SO4. (NH4)2SO4.18H2O d) Na2SO4. Al2(SO4)3. 24H2O 384. In diborane the two H - B - H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°			$c_1 c_0 + c_0$	$u_1 co + N_2$			
379. Producer gas, a fuel and also a source of nitrogen is obtained by: a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K2SO4. Al2(SO4)3. 24H2O b) K2SO4. Al2(SO4)3. 18H2O c) K2SO4. (NH4)2SO4.18H2O d) Na2SO4. Al2(SO4)3. 24H2O 384. In diborane the two H - B - H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	0.		a) Ca	d) I.,			
a) Passing steam over incandescent coke b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO2 and N2 are non-supporters of combustion. However, for putting out fires CO2 is preferred over N2 because CO2: a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K2SO4. Al2(SO4)3. 24H2O c) K2SO4. Al2(SO4)3. 24H2O d) Na2SO4. Al2(SO4)3. 18H2O c) K2SO4. (NH4)2SO4.18H2O d) Na2SO4. Al2(SO4)3. 24H2O 384. In diborane the two H - B - H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°			•	a) in			
b) Restricted supply of air through a bed of incandescent coke c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts $380. \ CO_2 \ and \ N_2 \ are \ non-supporters \ of combustion. \ However, for putting out fires CO_2 is preferred over N_2 because CO_2: $	_	=	optained by:				
c) Passing a mixture of steam and air over incandescent coke d) Spraying oil into hot retorts 380. CO ₂ and N ₂ are non-supporters of combustion. However, for putting out fires CO ₂ is preferred over N ₂ because CO ₂ : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O b) K ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 18H ₂ O c) K ₂ SO ₄ , (NH ₄) ₂ SO ₄ , 18H ₂ O d) Na ₂ SO ₄ , Al ₂ (SO ₄) ₃ , 24H ₂ O 384. In diborane the two H – B – H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	_		. 1				
d) Spraying oil into hot retorts $380. \ CO_2 \ and \ N_2 \ are \ non-supporters \ of combustion. \ However, for putting out fires CO_2 is preferred over N_2 because CO_2: $							
380. CO_2 and N_2 are non-supporters of combustion. However, for putting out fires CO_2 is preferred over N_2 because CO_2 : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO_2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H - B - H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°		The second secon	cent coke				
because CO_2 : a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO_2 is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°		The					
a) Does not burn b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas 381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in: a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°		orters of combustion. How	ever, for putting out fires (20_2 is preferred over N_2			
b) Forms non-combustible products with burning substances c) Is denser than nitrogen d) Is a more reactive gas $381. \ \text{Solder is an alloy of lead with} \\ a) \ \text{Copper} \qquad b) \ \text{Zinc} \qquad c) \ \text{Nickel} \qquad d) \ \text{Tin} \\ 382. \ \text{CeO}_2 \ \text{is present in :} \\ a) \ \text{Crookes glass} \qquad b) \ \text{Pyrex glass} \qquad c) \ \text{Flint glass} \qquad d) \ \text{All of these} \\ 383. \ \text{The formula of potash alum is} \\ a) \ \text{K}_2 \text{SO}_4. \ \text{Al}_2(\text{SO}_4)_3. \ \text{24H}_2\text{O} \\ c) \ \text{K}_2 \text{SO}_4. \ \text{Al}_2(\text{SO}_4)_3. \ \text{24H}_2\text{O} \\ c) \ \text{K}_2 \text{SO}_4. \ \text{NH}_4)_2 \text{SO}_4. \ \text{18H}_2\text{O} \\ 384. \ \text{In diborane the two H} - \ \text{B} - \ \text{H angles are nearly} \\ a) \ \text{60°, 120°} \qquad b) \ \text{95°, 120°} \qquad c) \ \text{95°, 150°} \qquad d) \ \text{120°, 180°} \\ \end{tabular}$		A					
c) Is denser than nitrogen d) Is a more reactive gas $381. \ \text{Solder is an alloy of lead with} \\ a) \ \text{Copper} \qquad b) \ \text{Zinc} \qquad c) \ \text{Nickel} \qquad d) \ \text{Tin} \\ 382. \ \text{CeO}_2 \ \text{is present in :} \\ a) \ \text{Crookes glass} \qquad b) \ \text{Pyrex glass} \qquad c) \ \text{Flint glass} \qquad d) \ \text{All of these} \\ 383. \ \text{The formula of potash alum is} \\ a) \ \text{K}_2 \text{SO}_4. \ \text{Al}_2(\text{SO}_4)_3. \ 24\text{H}_2\text{O} \\ c) \ \text{K}_2 \text{SO}_4. \ \text{Al}_2(\text{SO}_4)_3. \ 24\text{H}_2\text{O} \\ c) \ \text{K}_2 \text{SO}_4. \ \text{NH}_4)_2 \text{SO}_4. \ 18\text{H}_2\text{O} \\ d) \ \text{Na}_2 \text{SO}_4. \ \text{Al}_2(\text{SO}_4)_3. \ 24\text{H}_2\text{O} \\ 384. \ \text{In diborane the two H} - \ \text{B} - \ \text{H angles are nearly} \\ a) \ 60^\circ, 120^\circ \qquad b) \ 95^\circ, 120^\circ \qquad c) \ 95^\circ, 150^\circ \qquad d) \ 120^\circ, 180^\circ \\ \end{array}$	-	Entre Entre	LACITAL				
d) Is a more reactive gas $381. \text{Solder is an alloy of lead with}$ $a) \text{Copper} \qquad b) \text{Zinc} \qquad c) \text{Nickel} \qquad d) \text{Tin}$ $382. \text{CeO}_2 \text{is present in :}$ $a) \text{Crookes glass} \qquad b) \text{Pyrex glass} \qquad c) \text{Flint glass} \qquad d) \text{All of these}$ $383. \text{The formula of potash alum is}$ $a) \text{K}_2 \text{SO}_4. \text{Al}_2(\text{SO}_4)_3. 24\text{H}_2\text{O} \qquad b) \text{K}_2 \text{SO}_4. \text{Al}_2(\text{SO}_4)_3. 18\text{H}_2\text{O}$ $c) \text{K}_2 \text{SO}_4. (\text{NH}_4)_2 \text{SO}_4. 18\text{H}_2\text{O} \qquad d) \text{Na}_2 \text{SO}_4. \text{Al}_2(\text{SO}_4)_3. 24\text{H}_2\text{O}}$ $384. \text{In diborane the two H} - \text{B} - \text{H angles are nearly}$ $a) 60^\circ, 120^\circ \qquad b) 95^\circ, 120^\circ \qquad c) 95^\circ, 150^\circ \qquad d) 120^\circ, 180^\circ$			ubstances				
381. Solder is an alloy of lead with a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in : a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°	_						
a) Copper b) Zinc c) Nickel d) Tin 382. CeO ₂ is present in : a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°	_						
382. CeO_2 is present in : a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°	·	vith					
a) Crookes glass b) Pyrex glass c) Flint glass d) All of these 383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°	, , , ,	b) Zinc	c) Nickel	d) Tin			
383. The formula of potash alum is a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°							
a) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ b) K_2SO_4 . $Al_2(SO_4)_3$. $18H_2O$ c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°	2	· · ·	c) Flint glass	d) All of these			
c) K_2SO_4 . $(NH_4)_2SO_4$. $18H_2O$ d) Na_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$ 384. In diborane the two $H-B-H$ angles are nearly a) 60° , 120° b) 95° , 120° c) 95° , 150° d) 120° , 180°							
384. In diborane the two H – B – H angles are nearly a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	a) K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂	0		_			
a) 60°, 120° b) 95°, 120° c) 95°, 150° d) 120°, 180°	c) K ₂ SO ₄ . (NH ₄) ₂ SO ₄ .18H ₂	20	d) Na_2SO_4 . $Al_2(SO_4)_3$. 24	H_2O			
	384. In diborane the two $H-B$	 H angles are nearly 					
205 Aluminium chlorida aviete ac dimor Al Cl. in calid state ac wall as in calution of non-nalay calculate and	a) 60°,120°	b) 95°, 120°	c) 95°, 150°	d) 120°, 180°			
385. Aluminium chloride exists as dimer, Al ₂ Cl ₆ , in solid state as well as in solution of non-polar solvents such	385. Aluminium chloride exists	as dimer, Al ₂ Cl ₆ , in solid	state as well as in solution	of non-polar solvents such			
as benzene. When dissolved in water, it gives	as benzene. When dissolve	ed in water, it gives					
a) $Al^{3+} + 3Cl^{-}$ b) $[Al(H_2O)_6]^{3+} + 3Cl^{-}$ c) $[Al(OH)_6]^{3-} + 3HCl$ d) $Al_2O_3 + 6HCl$	a) Al ³⁺ + 3Cl ⁻	b) $[Al(H_2O)_6]^{3+} + 3Cl^-$	c) $[Al(OH)_6]^{3-} + 3HCl$	d) $Al_2O_3 + 6HCl$			
386. Which is correct for SiO ₂ ?	386. Which is correct for SiO_2 ?						
a) Linear, acidic b) Linear, basic c) Tetrahedral, acidic d) Angular, disc	a) Linear, acidic	b) Linear, basic	c) Tetrahedral, acidic	d) Angular, disc			
387. H ₃ BO ₃ is	387. H ₃ BO ₃ is						
a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid		ewis acid	b) Monobasic and weak I	Bronsted acid			
c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid							
388. CO ₂ is bubbled into an aqueous solution of Na ₂ CO ₃ , to give:	c) Monobasic and strong L	∟ewis acid	d) Tribasic and weak Bro	onsted acid			
a) NaOH b) HCO_3^- c) H_2O d) OH^-	-		=	onsted acid			

389. The composition of the common glass is		
a) Na_2O . CaO . $6SiO_3$ b) Na_2O . Al_2O_3 . SiO_2	c) CaO.Al ₂ O ₃ .SiO ₂	d) Na ₂ 0. Ca0. 6Si0 ₂
390. Feldspar is:		
a) Potassium sodium alumino silicate		
b) A mixture of potassium, aluminium and silicon of	xides	
c) Hydrated calcium silicate		
d) None of the above		
391. Tungsten carbides is an example of:		
a) A substitutional solid solution		
b) Passive solid solution		
c) Sandwich solid solution		
d) Interstitial solid solution		
392. Carbogen is:		
a) Mixture of $O_2 + 5 - 10\% CO_2$		
b) Used by pneumonia patients for respiration		
c) Used by victims of CO for respiration		
d) All of the above		
393. The compound used in lead accumulators is:		
a) PbO b) Pb ₂ O ₃	c) Pb ₃ O ₄	d) PbO ₂
394. Which of the following is pseudoalum?	0) 10304	u) 1 502
a) $(NH_4)_2SO_4 \cdot Fe_2(SO_4)_3 \cdot 24H_2O$		
b) $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_20$		
c) $MnSO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$	>	
d) None of the above		
395. One that marks the paper like lead is:		
a) Ga b) Ti	c) B	d) Tl
396. Which of the following undergoes sublimation?	с) Б	d) II
a) AlCl ₃ b) NH ₄ Cl	c) Dry ice	d) All of these
397. Which is used as mordant?	c) Dry icc	a) in or these
a) AlCl ₃ b) Al ₂ (SO ₄) ₃	c) Alum	d) Al ₂ O ₃
398. Which statement regarding H_3BO_3 is not correct?	c) muni	u) 111203
a) It is a strong tribasic acid		
b) It is prepared by acidifying an aqueous solution of	of horay	
c) It has a layer structure in which planar BO ₃ units		
d) It does not act as proton donor but acts on Lewis	•	•
399. The elements of IV A group or group 14 have 4 elec		
a) Form M^{4+} ions	don's in their outermost or	on They.
b) Form M^{4+} and M^{4-} ions		
c) Exhibit oxidation state of + 4 and +2		
d) Exhibit oxidation state of + 4		
400. Orthoboric acid when heated to red hot gives:		
a) Metaboric acid b) Pyroboric acid	c) Boron and water	d) Boric anhydride
401. Elements showing the phenomenon of allotropy is	c) boron and water	d) borte amilyurtue
a) lead b) copper	c) tin	d) aluminium
402. The function of fluorspar in the electrolytic reduction	-	-
a) To decrease the rate of oxidation of carbonate th		used cryolite (Na3Mir6) is
b) To lower the temperature of the melt and to mak		anducting
c) As a catalyst	e are rused misture very co	maucung
d) None of the above		

403. Which can be direct	ly brought into solid state fi	rom gaseous state?	
a) CO	b) CO ₂	c) PH ₃	d) $CO + H_2$
404. AlCl ₃ on hydrolysis	gives:		
a) $Al_2O_3 \cdot H_2O$	b) $Al(OH)_3$	c) Al_2O_3	d) AlCl ₃ · 6H ₂ O
405. Al reduces most of t	he metallic oxides due to its	s greater affinity for:	
a) Oxygen	b) Metals	c) Electrons	d) Protons
406. Annealing of glass is	done to:		
a) Make it more brit	ttle		
b) Make it opaque			
c) Check it from bec	_		
d) Make it transpare			
407. Boron carbide,B ₄ C i			
a) Making acetylene			
b) Making plaster of			
	tance after diamond		
d) Making boric acid			
408. Mark the correct sta			
	in the manufacture of met	hyl alcohol.	
	e highest calorific value.		
	with luminous flame.		
	f water gas is exothermic p	rocess.	
409. Butter of tin is	1) 0, 01, 01, 0		ng gl. Fy o
a) SnCl ₂ · 5H ₂ O	b) SnCl ₂ · 2H ₂ O	c) SnCl ₄ · 4H ₂ O	d) SnCl ₄ · 5H ₂ O
	can be prepared by the rea	action	
a) Silica with magne			
b) By heating carbon			
	sium fluosilicate with potas	sium	
d) None of the above	The second of the second of	OCHITOM	
411. Boric acid is polyme	eric because of:		
a) Its acidic natureb) Presence of hydromath	agan hands		
c) Its monobasic na	=		
d) Its geometry	ture		
	ng shows variable valency?)	
a) B	b) Al	c) Tl	d) None of these
-			ith increase in atomic number in
the carbon family?	correct with respect to the	property of the elements w	itii mercase iii acomie namber iii
a) Their metallic cha	aracter decreases		
-	2 oxidation state increases		
c) Their ionization of			
d) Their atomic size	••		
414. Among the halides:	acor cases		
1. BCl ₃ 2. A	ICl ₂		
=	nCl ₃		
•	nerg sing Lewis acid character is		
a) 1, 2, 3, 4	b) 4, 3, 2, 1	c) 3, 4, 2, 1,	d) 2, 3, 4, 1
415. Carbon is soluble in		C_{j} C_{j} T_{j} L_{j} L_{j}	u, 2, 3, 1, 1
a) Conc. HCl	b) dil. HNO ₃	c) H ₂ SO ₄	d) dil. HCl
416. Which cannot be pro		c) 112004	a, am ma

a) NaBH ₄	b) H ₃ BO ₃	c) $B_2(CH_3)_6$	d) $2(CH_3)_2N.B_2H_6$
417. In feldspar and zeolite	e, Si ⁴⁺ ions are replaced by w		
a) Oxide ion	b) Hydroxide ion	c) Aluminium ion	d) Potassium ion
418. Diamond and Emeral	d are :		
a) C, C	b) C, Al ₂ O ₃	c) C, Si	d) Si, Al
419. Carborundum is			
a) SiC	b) Al_2O_3 . H_2O	c) $Al_2(SO_4)_3$	d) AlCl ₃
420. Which is not an alloy	of aluminium?		
a) Magnalism	b) Duralumin	c) German silver	d) Aluminium bronze
421. Purification of alumin	a takes place by		
a) Bosch process	b) Hall's process	c) Hoope's process	d) Quartation process
422. Thermite a mixture us	sed for welding is:		
a) Fe and Al			
b) Ferric oxide and al			
c) Barium peroxide a	nd magnesium powder		
d) Cu and aluminium			
	g on hydrolysis with water gi	-	
a) Be ₂ C	b) Al ₄ C ₃	c) Mn ₃ C	d) All of these
424. The basic structural u			_
a) SiO ₂	b) [Si ₂ O ₇] ²⁻	c) SiO ₄ tetrahedron	d) [Si ₂ O ₅] ²⁻
425. Good conductor of he			
a) Anthracite	b) Diamond	c) Charcoal	d) Graphite
426. The structure of dibor		~	
-	ds and four $3c - 2e^-$ bonds	b) Two $2c - 2e^-$ bonds	
	ds and four $3c - 2e^-$ bonds	d) Four 2c – 2e [–] bonds	and two $3c - 2e^-$ bonds
-	up 14 forms only one hydride		
a) C	b) Si	c) Sn	d) Pb
a) C 428. The stability of + 1 ox	b) Si cidation state increases in the	c) Sn sequence:	•
a) C428. The stability of + 1 oxa) Ga < ln < Al < Tl	b) Si kidation state increases in the b) Al < Ga < In < Tl	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
 a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracted 	b) Si sidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
a) C 428. The stability of $+ 1$ ox a) Ga $<$ ln $<$ Al $<$ Tl 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e c CaF ₂	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
a) C 428. The stability of $+ 1$ ox a) Ga $<$ ln $<$ Al $<$ Tl 429. Aluminium is extracted a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3A$	b) Si sidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
a) C 428. The stability of $+ 1$ ox a) $Ga < ln < Al < Tl$ 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3A$ c) $Al_2O_3 + HF + Na_3A$	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆ AlF ₄	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
a) C 428. The stability of $+ 1$ ox a) Ga $<$ ln $<$ Al $<$ Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆ AlF ₄ AlF ₄	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
a) C 428. The stability of $+1$ ox a) $Ga < In < Al < Tl$ 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3F_6$ c) $Al_2O_3 + HF + Na_3F_6$ d) $Al_2O_3 + CaF_2 + Na_3F_6$	b) Si sidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e CaF ₂ AlF ₆ AlF ₄ AlF ₄ AlF ₄ ot allowed to pass through:	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt	d) In < Tl < Ga < Al ure of:
a) C 428. The stability of $+1$ ox a) $Ga < ln < Al < Tl$ 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3A$ c) $Al_2O_3 + HF + Na$ d) $Al_2O_3 + CaF_2 + Na$ 430. Ultra violet rays are n a) Flint glass	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e CaF ₂ AlF ₆ AlF ₄ AlF ₄ ot allowed to pass through: b) Crown glass	c) Snsequence:c) Tl < In < Ga < Al	d) In < Tl < Ga < Al
a) C 428. The stability of $+1$ ox a) $Ga < ln < Al < Tl$ 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3A$ c) $Al_2O_3 + HF + Na_3A$ d) $Al_2O_3 + CaF_2 + Na_3A$ 430. Ultra violet rays are na) Flint glass 431. Metal protected by a least section of the stability	b) Si sidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e CaF ₂ AlF ₆ AlF ₄ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is:	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass	d) In < Tl < Ga < Al ure of: d) Safety glass
a) C 428. The stability of $+1$ ox a) $Ga < ln < Al < Tl$ 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3F_6$ c) $Al_2O_3 + KF + Na_3F_6$ d) $Al_2O_3 + CaF_2 + Na_3F_6$ 430. Ultra violet rays are na) Flint glass 431. Metal protected by a land Al	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆ AlF ₄ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu
a) C 428. The stability of $+ 1$ ox a) $Ga < In < Al < Tl$ 429. Aluminium is extracte a) $Al_2O_3 + Na_3AlF_6 +$ b) $Al_2O_3 + KF + Na_3A$ c) $Al_2O_3 + HF + Na_3A$ d) $Al_2O_3 + CaF_2 + Na_3A$ 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) $Al_3Al_3Al_3Al_3Al_3Al_3Al_3Al_3Al_3Al_3$	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e caF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag olume composition equal to 3	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 0 ₂ +3% CO is:
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag olume composition equal to 3 b) Water gas	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆ AlF ₄ Ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag olume composition equal to 3 b) Water gas efractive index is prepared of	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 0 ₂ +3% CO is: d) Petrol gas
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e caF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag colume composition equal to 3 b) Water gas efractive index is prepared of b) CoO	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 0 ₂ +3% CO is: d) Petrol gas d) CaO
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO 434. The colour of copper	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e c CaF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag olume composition equal to 3 b) Water gas efractive index is prepared of b) CoO metaborate and chromium m	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO etaborates are respectively	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 2 +3% CO is: d) Petrol gas d) CaO
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO 434. The colour of copper n a) Blue, green	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e • CaF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag blume composition equal to 3 b) Water gas efractive index is prepared of b) CoO metaborate and chromium m b) Green, blue	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO etaborates are respectively c) Red, green	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 0 ₂ +3% CO is: d) Petrol gas d) CaO
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO 434. The colour of copper n b) Blue, green 435. Which gas is essential	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e caF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag colume composition equal to 3 b) Water gas efractive index is prepared of b) CoO metaborate and chromium m b) Green, blue	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO etaborates are respectively c) Red, green gases?	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 0 ₂ +3% CO is: d) Petrol gas d) CaO : d) Brown, blue
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO 434. The colour of copper n a) Blue, green 435. Which gas is essential a) CO ₂	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e c CaF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag olume composition equal to 3 b) Water gas efractive index is prepared of b) CoO metaborate and chromium m b) Green, blue constituent of almost all fuel b) N ₂	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO etaborates are respectively c) Red, green gases? c) Co	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 2 +3% CO is: d) Petrol gas d) CaO
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO 434. The colour of copper n a) Blue, green 435. Which gas is essential a) CO ₂ 436. When SnCl ₂ reacts wi	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e caF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag composition equal to 3 b) Water gas efractive index is prepared of b) CoO metaborate and chromium m b) Green, blue constituent of almost all fuel b) N ₂ th HgCl ₂ , the product formed	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO etaborates are respectively c) Red, green gases? c) Co are:	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 2 +3% CO is: d) Petrol gas d) CaO d) Brown, blue d) H ₂ O
a) C 428. The stability of + 1 ox a) Ga < ln < Al < Tl 429. Aluminium is extracte a) Al ₂ O ₃ + Na ₃ AlF ₆ + b) Al ₂ O ₃ + KF + Na ₃ A c) Al ₂ O ₃ + HF + Na d) Al ₂ O ₃ + CaF ₂ + Na 430. Ultra violet rays are n a) Flint glass 431. Metal protected by a l a) Al 432. The fuel gas having vo a) Oil gas 433. Glass having higher re a) NiO 434. The colour of copper n a) Blue, green 435. Which gas is essential a) CO ₂	b) Si cidation state increases in the b) Al < Ga < In < Tl ed from alumina (Al ₂ O ₃) by e caF ₂ AlF ₆ AlF ₄ ot allowed to pass through: b) Crown glass ayer of its own oxide is: b) Ag colume composition equal to 3 b) Water gas efractive index is prepared of b) CoO metaborate and chromium m b) Green, blue constituent of almost all fuel b) N ₂ th HgCl ₂ , the product formed b) Sn + Cl ₂ + Hg ₂ Cl ₂	c) Sn sequence: c) Tl < In < Ga < Al lectrolysis of a molten mixt c) Crookes glass c) Au 4% CH ₄ + 48%H ₂ + 15%C c) Coal gas oxide of c) PbO etaborates are respectively c) Red, green gases? c) Co are:	d) In < Tl < Ga < Al ure of: d) Safety glass d) Cu 0 ₂ +3% CO is: d) Petrol gas d) CaO : d) Brown, blue

a) Mg-Al silicate	b) Be-Al silicate	c) Na-Al silicate	d) Fluoro silicate of Al	
$438. B(OH)_3 + NaOH \rightleftharpoons NaBO_2 + Na[B(OH)_4] + H_2O$				
	s made to proceed in forwa			
a) Addition of <i>cis</i> -1, 2-		b) Addition of borax		
c) Addition of trans-1,		d) Addition of Na ₂ HPO	4	
439. CO reacts with chloring		=		
a) COCl ₂	b) CO ₂	c) CCl ₄	d) CHCl ₃	
440. Silicon is				
a) Semiconductor	b) Insulator	c) Conductor	d) None of these	
441. Aluminium vessels sho			soda since	
	s with aluminium to form so			
	s with aluminium to form ir	isoluble aluminium oxide		
c) Washing soda is exp				
d) Washing soda is eas				
442. When a mixture of san	-			
a) NO ₂	b) 0 ₂	c) K ₂ SiO ₃	d) All of these	
443. Aluminium deposited a		a good mirror, essentially b	oecause:	
a) It has better shine the	ıan Ag			
b) It does not scratch				
c) Coating is much smo				
d) It does not tarnish in				
444. CO is poisonous gas, ar			13	
a) Carborundum	b) Carbogen	c) Carbonic acid	d) Pure oxygen	
445. When CO is heated wit	The state of the s	_	D 6 11 1	
a) Sodium benzoate	b) Sodium acetate	c) Sodium formate	d) Sodium oxalate	
446. Glass is a		13.6.1		
a) Micro crystalline so	id EDII	b) Gel		
c) Super cooled liquid	CIPLUS EDU	d) Polymeric mixture		
447. Difference between dia				
	with oxygen to form carbon	dioxide but diamond does	not	
b) The atoms in each h		.1		
	e in diamond is different fro	om that in graphite		
d) All of the above	C			
448. Which element is used	=) C'	15.84.	
a) Sn	b) Sb	c) Si	d) Mg	
449. Which one of the follow			J) DO(OII)	
a) SO(OH) ₂	b) SO ₂ (OH) ₂	c) B(OH) ₃	d) $PO(OH)_3$	
450. Aluminium reacts with	-	a) Al N	a) al M	
a) AlN 451. Silica is a/an	b) Al ₂ N ₃	c) Al ₂ N	d) Al ₄ N ₆	
a) Acidic flux only		h) Canqua only		
•		b) Gangue only	dia fluor	
c) Basic flux only	wing is the sourcet statemen	d) Both gangue and aci	uic iiux	
452. Which one of the follow	_	IU;		
a) Boric acid is a proto				
	oordination number of six		. 1.1.1	
-	mullium and aluminium !	ro bridged ablanida atmi-t	to in colld phace	
4) B U 2MII ia kw arri	ryllium and aluminium hav	e bridged chloride structui	re in solid phase	
	n as inorganic benzene	e bridged chloride structui	e in solid phase	
d) B ₂ H ₆ . 2NH ₃ is know 453. Which of the following a) Fe ₂ O ₃	n as inorganic benzene	re bridged chloride structur $ m c$	e in solid phase d) BaO ₂	

454. Which metal burn in air	at high temperature with th	ne evolution of much heat?			
a) Cu	b) Pb	c) Hg	d) Al		
455. Which is a true acid anh	ydride?	, 0	•		
a) Al ₂ O ₃	b) CO	c) CaO	d) CO ₂		
456. Roasted tin stone ore at	ter washing with water is k	nown as			
a) Block tin	b) White tin	c) Black tin	d) Granulated tin		
457. Compound of lead used	in match industry is:				
a) PbO	b) PbO ₂	c) PbCl ₂	d) None of these		
458. Which gas has more per	centage in coal gas?				
a) CO	b) H	c) H ₂	d) CH ₄		
459. A particular elements b		riod of the periodic table. It	is:		
a) Gas, slightly metallic		c) Solid, non-metallic	d) Solid, less metallic		
460. In graphite, the sheets a					
a) Ionic forces	b) Covalent forces	c) Van der Waals' forces	d) Metallic forces		
461. Silicones have the gene		_			
a) (SiO ₄) ^{4–}	b) SiO ₆ ^{7–}	c) $(SiO_3)_n^{-2n}$	d) $(R_2SiO)_n$		
462. Water gas cannot be pr		ess because:			
a) More coke must be a					
	allowed to cool occasionally				
	tured without producer gas				
d) The reaction ceases v					
463. In silica (SiO_2), each sili	con atom is bonded to				
a) Two oxygen atoms	31	b) Four oxygen atoms			
c) One silicon and two	700-	d) One silicon and four or	kygen atoms		
464. Glass reacts with HF to) NI AIE	D. H. C'D		
a) H_2SiO_3	b) SiF ₄	c) Na ₃ AlF ₆	d) H ₂ SiF ₆		
465. Which glass has the hig		CATION	d) Drawey alega		
a) Soda glass	b) Flint glass	c) Jena glass	d) Pyrex glass		
466. Diamond and graphite l soft. This is because:	ooth are made of carbon ato.	ms. Diamond is extremely i	iaru whereas graphite is		
	a) The chemical bonds between any two carbon atoms in diamond are strongerb) Diamond is ionic whereas graphite is covalent				
	diamond is chemically bond	lad to a greater number of r	poighbouring carbon atoms		
	nond are smaller in size	ied to a greater number of i	leighbouring carbon atoms		
467is the byproduct obt		occ			
a) Oxygen	b) Ammonia	c) Nitrogen dioxide	d) Nitric oxide		
468. An ionic compound is:	b) minionia	c) will ogen thomat	a) Wate Oxide		
a) CCl ₄	b) SnCl ₂	c) SiCl ₄	d) CeCl ₄		
469. Which one of the follow	· -	c) 51G1 ₄	uj dedi ₄		
	minium is more acidic than	that of horon			
	on is basic, while that of Al				
•	on is acidic, while that of Al	•			
	on and Aluminium are amp				
470. Density is highest for :					
a) Si					
a) 51	b) Ge	c) Sn	d) Pb		
•	•		•		
471. If the flame of a gas stov	•		to provide:		
471. If the flame of a gas stor	ve burns with yellow tips, th b) More air	e burner must be adjusted t	•		

GPLUS EDUCATION	WEB: WWW.GPLUSEDUCA	TION.ORG PHONE N	O: 8583042324 Page 30
a) Carbon dioxide	b) Carbon monoxide	c) Nitrogen	d) Oxygen
490. During day time plan		2.27	D. O.
a) BF ₆ ³⁻	b) BH ₄	c) $B(OH)_4^-$	d) BO ₂
	which one of the following anio		
a) Acidic	b) Alkaline	c) Neutral	d) Insoluble
488. Aqueous solution of	sodium silicate is:		
atoms d) Each silicon atom atoms	is surrounded by four oxygen	n atoms and each oxygen ator	n is bounded to two silicon
c) Each silicon atom	onded to two oxygen atoms a is surrounded by two oxygen	atoms and each oxygen aton	n is bounded to two silicon
=	bonds between silicon and ox	ygen atoms	
487. In silicon dioxide	handa haturaan alliaan au 1	gran atoma	
c) $K_2SO_4 \cdot Cr_2(SO_4)$	₃ • ∠4H ₂ U	d) $K_2SO_4 \cdot Fe_2(SO_4)_3 \cdot 24$	H ₂ U
a) $K_2SO_4 \cdot Al_2(SO_4)_3$		b) (NH ₄) ₂ SO ₄ · FeSO ₄ · 61	-
486. Common alum is	2411.0	1) (NII) CO T CO C	1.0
a) Basic	b) Acidic	c) Amphoteric	d) Neutral
485. PbO isoxide.			
a) Hardness	b) High refractive index	x c) Purest form of carbon	d) Chemical inertness
484. The use of diamond	as a gem depends on its:		
a) P	b) C	c) S	d) Bone
483. Bone black is an allo	otrope of :	CATION	
c) Zinc sulphate		d) Ferrous sulphate	
a) Sodium alumino s	silicate	b) Copper sulphate	
482. Lapis lazuli is	.,	3) 332	
a) N ₂	b) CO	c) CO ₂	d) NO ₂
	ich burns with blue flame and		u) 1125103
a) SiO ₂	b) SiO	c) Si	d) H ₂ SiO ₃
are of	ng m contact with an barns w	itii a iummous name product	ng vortex rings. These rings
	ng in contact with air burns w		•
a) H_2SO_4	b) HCl	c) CH ₃ COOH	d) Pure water
479. Lead pipes are readi			
d) None of the above	= = =	3 12 /0, Al ₂ O ₃ 5 /0	
	4%, CaO		
	15%, CaO 8%, Al ₂ O ₃ 2% 1%, CaO 3%, K ₂ O 4%, PbO 44%	4	
	mposition of soda glass is:		
a) 8	b) 6	c) 12	d) 4
477. Coordination number			
c) $C \gg Si < Ge < Si$		d) $C \gg Si = Ge = Sn \gg Si = Ge = Ge = Sn \gg Si = Ge = Ge = Sn \gg Si = Ge = G$	Pb
a) $C \gg Si \gg Ge = S$		b) $C \ll Si \ll Ge = Sn \ll Si$	
	tenation in Group 14 elements		
c) Weak diacid base	$CO(OH)_2$	d) Weak monoacid base I	НО—СООН
a) Weak dibasic acid	l H ₂ CO ₃	b) Weak monobasic acid	НО-СООН
475. CO ₂ in water behave	es as		
a) Fluorocarbon	b) Hydrocarbon	c) Pesticide	d) Insecticide
474. Teflon is:	5) 511	c) I b	u) u
a) N	b) Sn	c) Pb	d) C
473 Which element show	ws more pronounced inert pair	r effect?	

491. Diamond is hard because		
a) All the four valence electrons are bonded to each	carbon atom by covalent b	onds
b) It is a giant molecule		
c) It is made up of carbon atoms		
d) It cannot be burnt		
492. The process used for purification of bauxite ore con	taining high silica content a	is impurity is:
a) Baeyer's process b) Hall's process	c) Hoope's process	d) Serpeck's process
493. The geometry and the hybridisation present about t	the central atom in BF ₃ is:	
a) Linear, sp b) Trigonal planar, sp^2	c) Tetrahedral, sp^3	d) Pyramidal, sp^3
494. Aluminium is mainly extracted from:		
a) Magnetite b) Bauxite	c) Alumina	d) Haematite
495. A metal, M forms chlorides in its $+2$ and $+4$ oxidation	on states. Which of the follo	wing statements about
these chlorides is correct?		
a) MCl_2 is more volatile than MCl_4		
b) MCl_2 is more soluble in the anhydrous ethanol th	an MCl₄	
c) MCl_2 is more ionic than MCl_4	•	
d) MCl ₂ is more easily hydrolysed than MCl ₄		
496. Which is not a crystalline form of silica?		
a) Quartz b) Azurite	c) Crystobalite	d) Tridymite
497. Which is likely to show inert-pair effect?	, ,	, ,
a) K b) Mg	c) Al	d) Pb
498. A potter wishes to make a deep blue glaze. Which or		•
a) Iron oxide b) Cuprous oxide		d) Nickel oxide
499. Specify the coordination geometry around and hybr	-	,
BF ₃ and NH ₃ :		
a) N : Tetrahedral, $sp3$; B : Tetrahedral, sp^3		
h) N · Dyramidal cn? R · Dyramidal cn ³		
c) N : Pyramidal, $sp3$; B :Planar, sp^3	CATION	
d) N: Pyramidal, $sp3$; B: Tetrahedral, sp^3	27114011	
500. The bonds present in borazole are:		
a) 12σ , 3π b) 9σ , 6π	c) 6σ, 6π	d) 9σ, 9π
501. Tin, a silvery white metal exists in:	<i>c</i> _j <i>c</i> ₀ , <i>c</i> ₀ ,	w) 20, 210
a) Four allotropic forms		
b) Three allotropic forms		
c) Five allotropic forms		
d) Two allotropic forms		
502. Carbon suboxide C ₃ O ₂ has		
a) Bent structure	b) Trigonal planar struct	ure
c) Linear structure	d) Distorted tetrahedral s	
503. Which of the following oxide is amphoteric?	,	
a) CaO b) CO ₂	c) SiO ₂	d) SnO_2
504. In graphite, electrons are:	-, 2) 2
a) Localized on each carbon atom		
b) Spread out between the sheets		
c) Localized on every third carbon atom		
d) Present in antibonding orbital		
505. Which is formed when SiCl ₄ vapours are passed over	er hot Mg?	
a) $SiCl_2 + MgCl_2$ b) $Si + MgCl_2$	c) $Mg_2Si + Cl_2$	d) MgSiCl ₆
506. Which of the following does not have a tetrahedral s	. == =	, 5

c) BH_{4}^{-} c) $Al_{2}O_{3}$ the sea, because protective	d) CH ₄ d) Ga ₂ O ₃ ve oxide film:
, <u> </u>	
, <u> </u>	
the sea, because protectiv	ve oxide film:
c) Fe	d) Na
$b) (Me)_2 Si = 0$	
d) Me ₂ SiCl(OH)	
c) Reducing agent	d) Flux
c) Tl	d) B
olution to give:	
c) Three types of ions	d) Four types of ions
c) Aluminium chloride	d) Aluminium sulphate
ATTONI	
c) PbSO ₄	d) $(CH_3COO)_2Pb$
c) [SiCl ₆] ²⁻	d) [CCl ₆] ²⁻
rinting ink, paint and blac	k varnish?
c) Gas carbon	d) Lamp black
c) $_{-\mathrm{Si-O-Si-O-Si-}}^{\mid}$	d) Si—Si—Si—Si
ydrolysis will give a three	dimensional silicone?
c) SiCl ₄	d) R_2 SiCl ₂
	o) (Me) ₂ Si = 0 d) Me ₂ SiCl(OH) c) Reducing agent c) Tl clution to give: c) Three types of ions c) Aluminium chloride c) PbSO ₄ c) [SiCl ₆] ²⁻ rinting ink, paint and blace) Gas carbon c) —Si—O—Si—O—Si— cydrolysis will give a three

- a) Orthosilicate
- b) Pyrosilicate
- c) Meta silicate
- d) None of these

- 522. Tin sulphide is:
 - a) Yellow solid
 - b) Soluble in yellow ammonium sulphide

c) Precipitated by H ₂ S ir	ı acidic medium		
d) All of the above			
523. CO ₂ is liberated during:			
a) Combustion of coke	b) Fermentation	c) Respiration	d) All of these
524. Which of the following g			
a) Saftey	b) Jena	c) Crook's	d) Pyrex
525. Lead pipes are not suital	-	ause	
	e is deposited over pipes		
b) Lead forms basic lead			
	er containing air to form Pl	b(OH) ₂	
d) Lead reacts with air to	-		
526. When sodium or potassi	um oxide is heated in a cu	rrent of ${ m CO_2}$ at 360° C, we get	
a) Sodium formate	b) Sodium oxalate	c) Sodium acetate	d) Sodium carbonate
527. Aluminium forms:			
a) Electrovalent compou	ınds only		
b) Covalent compounds	only		
c) Electrovalent and cov	alent compounds both		
d) Coordinate compound	ds only		
528. Chrome yellow is:			
a) $PbCrO_4$	b) K ₂ Cr ₂ O ₇	c) PbMoO ₄	d) Pb ₃ O ₄
529. Which oxidation states a	re the most characteristic	s of lead and tin respectively	?
a) +2, +4	b) +4, +4	c) +2, +2	d) +4, +2
530. The alloy used in prepar	ation of balance beam:	>	
a) Magnalium	b) Duralumin	c) Aluminium bronze	d) Nickeloy
531. The substance used to in	The same of the sa		
a) Cu ₂ O	b) CdS	c) MnO ₂	d) Cr_2O_3
532. In the reaction: $BF_3 + 3I$	$LiBH_4 \rightarrow 3LiF + X$; X is:	G 1 71 G 11	, - ,
a) B ₄ H ₁₀	b) B ₂ H ₆	c) BH ₃	d) B ₃ H ₈
533. Which metal powder if s		ardous?	, ,
a) Al	b) B	c) Ca	d) K
534. Crystalline silicon was o	btained by:		,
a) Berzelius	-	c) Deville	d) Winkler
535. Aluminium is more reac	,		
a) Aluminium is a noble		J	
b) Oxygen forms a prote			
c) Iron undergoes reacti			
d) Iron forms both mond			
536. An aqueous solution of a		recipitate on treatment with	n dil HCl. which dissolved on
·=·		ick precipitate is formed. The	
a) Hg_2^{2+} salt	b) Cu ²⁺ salt	c) Ag ⁺ salt	d) Pb ²⁺ salt
537. Silicon hydrides are nam		c) rig saic	aj i b sait
a) Silicones	b) Silicates	c) Silicols	d) Silanes
$538. H_2SO_4$ is not used for the	•		d) Shalles
a) It does not react	e preparation of CO ₂ from	mai bie chips because.	
	ia avalvod		
b) Huge amount of heat:			
c) The reaction is vigoro		longaited on markle skins	d stone the reaction
		leposited on marble chips an	u stops the reaction
539. Which compound can man		a) Magyaration 1.1.	d) Cummous substitute
a) Aluminium sulphate	b) Ferrous sulphate	c) Magnesium sulphate	d) Cuprous sulphate

540. B—F bond order in BF ₃ is	s:			
a) 1	b) 2	c) 3	d) 4/3	
541. A kettle which becomes furred-up in use has inside it a deposit composed mainly of:				
a) Calcium carbonate				
b) Magnesium bicarbona	te			
c) Magnesium sulphate				
d) Sodium sulphate				
542. Among the following the	hardest substance is :			
a) Peat	b) Lignite	c) Graphite	d) Anthracite	
543. Aluminium is obtained by	У			
a) Reducing Al ₂ O ₃ with c	oke	b) Electrolysing Al ₂ O ₃ dis	ssolved in Na ₃ AlF ₆	
c) Reducing Al_2O_3 with c	hromium	d) Heating alumina with o	cryolite	
544. Which of the following is	not correct in case of boron	n nitride?		
a) It is also called borazo	n			
b) It is chemically unreac	tive			
c) It is hard because it ha	s diamond like structure			
d) It has magnetic proper	rties			
545. When sugar is treated wi	th conc. H ₂ SO ₄ , we get a pu	re form of :		
a) Carbon	b) Hydrogen	c) Oxygen	d) None of these	
546. Borazole is obtained by r	eaction of:			
a) $NH_3 + B_2H_6$ in 2 : 1 ra	tio			
b) NH ₃ + B ₂ H ₆ in 1 : 2 ra	tio			
c) $NH_3 + B_2H_6$ in 1 : 4 ra	tio	>		
d) $NH_3 + B_2H_6$ in 4:1 rat	io			
547. Percentage of lead in lead	d pencil is			
a) 20	b) 80	c) 70	d) Zero	
548. In B ₂ H ₆ :	C FRIII	LATTONI		
a) There is a direct boror	n-boron bond	.AHON		
b) The structure is simila	r to that of C ₂ H ₆			
c) The boron atoms are l	inked through hydrogen br	idges		
d) All the atoms are in on	e plane			
549. Zn on heating with bariu	m carbonate gives :			
a) BaO	b) ZnO	c) CO	d) All of these	
550. Covalency and hybridizat	tion of B in BF_4^- is:			
a) 5, <i>sp</i>	b) $4, sp^3$	c) $3, sp^3$	d) $2, sp^2$	
551. Hybridisation of boron in	diborane is:			
a) <i>sp</i>	b) sp^2	c) sp^3	d) sp^3d^2	
552. When tin is treated with	concentrated nitric acid			
a) It is converted into sta	nnous nitrate	b) It becomes passive		
c) It converted into stanr	nic nitrate	d) It is converted into me	tastannic acid	
553. The ability of a substance	e to assume two or more cry	ystalline structures is called	d:	
a) Isomerism	b) Amorphism	c) Polymorphism	d) Isomorphism	
554. Glass is soluble in:				
a) HF	b) H ₂ SO ₄	c) HClO ₄	d) Aqua-regia	
555. Al_2O_3 formation involves			·	
a) Deoxidizer	b) Confectionary	c) Indoor photography	d) Thermite welding	
556. Duralumin is an alloy of:				
a) Al and Mg	b) Mg and Cu	c) Al, Mg, Mn and Cu	d) Al and Cu	
557. Among the following the	purest form of carbon is :			

a) [Si20 ²] _n b) [Si0 ²] _n c) Si0 ⁴ d) Si20 ⁶ 559. Tin reacts with: a) Hot conc. HCl b) Conc. HNO ₃ c) HgCl ₂ on heating d) All of these 560. Which gas is responsible for green house effect? a) CO ₂ b) SO ₂ c) CO d) SO ₃ 561. All and Ga have the same covalent radii because of: a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor sheilding power of s-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Chlorine is more electronegative than hydrogen b) There is pπ - pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 63. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above
599. Tin reacts with: a) Hot conc. HCl b) Conc. HNO ₃ c) HgCl ₂ on heating d) All of these 560. Which gas is responsible for green house effect? a) CO ₂ b) SO ₂ c) CO d) SO ₃ 561. All and Ga have the same covalent radii because of: a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) There is pπ − pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO + H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above
a) Hot conc. HCl b) Conc. HNO ₃ c) HgCl ₂ on heating d) All of these 560. Which gas is responsible for green house effect? a) CO ₂ c) CO d) SO ₃ 561. All and Ga have the same covalent radii because of: a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor sheilding power of d-electrons of Ga atoms d) Greater sheilding power of d-electrons of Ga atoms d) Greater sheilding power of d-electrons of Ga atoms d) Greater sheilding power of d-electrons of Ga atoms d) Greater sheilding power of d-electrons of Ga atoms d) Colorine is more electronegative than hydrogen b) There is pπ − pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO + H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above
560. Which gas is responsible for green house effect? a) CO ₂ b) SO ₂ c) CO d) SO ₃ 561. Al and Ga have the same covalent radii because of: a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms 61) Greater shielding power of d-electrons of Ga atoms 562. BCl ₃ does not exist as dimer but BH ₃ exist as dimer (B ₃ H ₆) because: a) Chlorine is more electronegative than hydrogen b) There is pπ – pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) CO ₂ b) SO ₂ c) CO d) SO ₃ 561. Al and Ga have the same covalent radii because of: a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms 562. BCl ₃ does not exist as dimer but BH ₃ exist as dimer (B ₃ H ₆) because: a) Chlorine is more electronegative than hydrogen b) There is pπ – pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
561. Al and Ga have the same covalent radii because of: a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms 562. BCl₃ does not exist as dimer but BH₃ exist as dimer (B₃H₆) because: a) Chlorine is more electronegative than hydrogen b) There is pπ − pπ back bonding in BCl₃ but BH₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO₃ b) NaCl c) Na₂CO₃ d) NaHCO₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K₂Cr₂O ₇ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → CO₂ + 2H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) Greater sheilding power of s-electrons of Ga atoms b) Poor sheilding power of s-electrons of Ga atoms c) Poor shielding power of d-electrons of Ga atoms d) Greater shielding power of d-electrons of Ga atoms 552. BCl₃ does not exist as dimer but BH₃ exist as dimer (B₃H₆) because: a) Chlorine is more electronegative than hydrogen b) There is pπ − pπ back bonding in BCl₃ but BH₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO₃ b) NaCl c) Na₂CO₃ d) NaHCO₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K₂Cr₂O₁ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → CO₂ + 2H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
b) Poor sheilding power of s -electrons of Ga atoms c) Poor shielding power of d -electrons of Ga atoms d) Greater shielding power of d -electrons of Ga atoms 562. BCl ₃ does not exist as dimer but BH ₃ exist as dimer (B ₃ H ₆) because: a) Chlorine is more electronegative than hydrogen b) There is $p\pi - p\pi$ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO_2 + 2H_2$ c) Water vapour dissociates into H_2 and O_2 d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
c) Poor shielding power of <i>d</i> -electrons of Ga atoms d) Greater shielding power of <i>d</i> -electrons of Ga atoms 562. BCl ₃ does not exist as dimer but BH ₃ exist as dimer (B ₃ H ₆) because: a) Chlorine is more electronegative than hydrogen b) There is pπ − pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
d) Greater shielding power of <i>d</i> -electrons of Ga atoms 562. BCl ₃ does not exist as dimer but BH ₃ exist as dimer (B ₃ H ₆) because: a) Chlorine is more electronegative than hydrogen b) There is pπ − pπ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) Chlorine is more electronegative than hydrogen b) There is pπ − pπ back bonding in BCl₃ but BH₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO₃ b) NaCl c) Na₂CO₃ d) NaHCO₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K₂Cr₂Oγ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → CO₂ + 2H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) Chlorine is more electronegative than hydrogen b) There is $p\pi - p\pi$ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
b) There is $pπ - pπ$ back bonding in BCl₃ but BH₃ does not contain such multiple bonding c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO₃ b) NaCl c) Na₂CO₃ d) NaHCO₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K₂Cr₂O₂ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → CO₂ + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K ₂ Cr ₂ O ₇ and H ₂ SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H ₂ O → CO ₂ + 2H ₂ b) C + H ₂ O → CO ₂ + 2H ₂ c) Water vapour dissociates into H ₂ and O ₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
atoms get fitted between boron atoms d) None of the above 563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO3 b) NaCl c) Na2CO3 d) NaHCO3 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + C_2H_2O \rightarrow CO_2 + C_2H_2O \rightarrow CO_2 + C_2H_2O \rightarrow CO_2O_3$ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
63. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO_2 + 2H_2$ c) Water vapour dissociates into H_2 and O_2 d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
563. Magnalium contains a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K_2 Cr ₂ O ₇ and H_2 SO ₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO_2 + 2H_2$ c) Water vapour dissociates into H_2 and O_2 d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) Al + Mg b) Mg + Cu c) Mg + Fe d) Mg + Ag 564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO_2 + 2H_2$ c) Water vapour dissociates into H_2 and O_2 d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
564. Crystalline form of silica is called a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO + H_2$ c) Water vapour dissociates into H_2 and O_2 d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) Crystalline silicon b) Quartz c) Rock d) Talc 565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO + H_2$ c) Water vapour dissociates into H_2 and H_2
565. Borax is prepared by treating colemanite with: a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO + H_2$ c) Water vapour dissociates into H_2 and O_2 d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) NaNO $_3$ b) NaCl c) Na $_2$ CO $_3$ d) NaHCO $_3$ 566. Which is not the property of diamond? a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K_2 Cr $_2$ O $_7$ and H_2 SO $_4$ at 200° C 567. What happens when steam is passed over red hot carbon? a) $C + 2H_2O \rightarrow CO_2 + 2H_2$ b) $C + H_2O \rightarrow CO + H_2$ c) Water vapour dissociates into H_2 and H_2 Co d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K₂Cr₂O ₇ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → CO + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 a) It is insoluble in all solvents b) It is an isomer of graphite c) It is purest form of carbon d) It is oxidized with a mixture of K₂Cr₂O₇ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → Co + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 b) It is an isomer of graphite c) It is purest form of carbon PLUS End of the pure of the pure
 c) It is purest form of carbon 2.00 and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → Co + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 d) It is oxidized with a mixture of K₂Cr₂O₇ and H₂SO₄ at 200° C 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → Co + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 567. What happens when steam is passed over red hot carbon? a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → Co + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 a) C + 2H₂O → CO₂ + 2H₂ b) C + H₂O → Co + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 b) C + H₂O → Co + H₂ c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
 c) Water vapour dissociates into H₂ and O₂ d) None of the above 568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
d) None of the above568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order toa) Minimize the heat loss due to radiation
568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to a) Minimize the heat loss due to radiation
order to a) Minimize the heat loss due to radiation
a) Minimize the heat loss due to radiation
h) Protect aluminium produced from ovygen
c) Dissolve bauxite and render it conductor of electricity
d) Lower the melting point of bauxite
569. Boric acid when burnt with ethyl alcohol gives a green edged flame due to the combustion of:
a) Boric anhydride b) Metaboric acid c) Ethyl borate d) Orthoboric acid
570. Purest form of silica is:
a) Quartz b) Flint c) Sandstone d) Keiselguhr
571. Alzeimer's disease is caused due to Al interaction with internal organs of the body if food is contaminated
with Al. This disease
a) Induces senility in young persons b) Causes memory loss d) None of the above
c) Both (a) and (b) d) None of the above 572 . In the reaction, LiH + AlH ₂ \rightarrow LiAlH ₄ , AlH ₂ and LiH act as:

	a) Lewis acid and Lewis b			
	b) Lewis base and Lewis a			
	c) Bronsted base and Bron	nsed acid		
	d) None of the above			
573.	. Metalloid among the follo	_		15 =1
	a) Si	b) C	c) Ge	d) Pb
574	The most abundant metal			D. F.
	a) Na	b) Al	c) Ca	d) Fe
5/5	. Alumina may be converted		m chioride by:	
	a) Heating it with conc. Ho			
	b) Heating in a current of	-		
	c) Heating it with rock sal		a a a a a a a a a a a a a a a a a a a	
E76		nd heating the mixture in a		
370	. Which metal is an importa	b) Ge	c) 0s	d) Da
577	a) Ag . When Al is added to potas	•	c) us	d) Ra
3//	a) No reaction takes place	<u>-</u>		
	b) Oxygen is evolved	•		
	c) Water is produced			
	d) Hydrogen is evolved			
578.	. An acid among the followi	ing is:		
5,0	a) $B(OH)_3$	b) Al(OH) ₃	c) Fe(OH) ₃	d) None of these
579.	. Which is not used as a refi		5) 1 2 (21.7) 3	u) 110110 01 unesc
	a) NH ₃	b) CO ₂	c) CCl ₂ F ₂	d) CO
580	. Which is used in high tem	- No. 1.49	, , ,	
	a) Na	b) Tl	c) Ga	d) Hg
581	. Which ore is best concent			, 0
	a) Malachite	b) Cassiterite	c) Galena	d) Magnetite
582	Buckminster-fullerene is a	a variety of		
	a) Boron	b) Carbon	c) Ammonia	d) Fluorine
583	. Commercially important o	ore of lead is:		
	a) Haematite	b) Sphalerite	c) Siderite	d) Galena
584	. $(CH_3)_2SiCl_2$ undergoes hy	v drolysis but $(CH_3)_2CCl_2$ do	oes not why?	
	a) Low lying <i>d</i> -orbitals pr	esent in Si but not in C	b) Only 3p orbital is invol	ved in C
	c) Silicon is more acidic		d) Si – Cl bond is more po	olar than C — Cl bond
585	_		s in boric acid (H_3BO_3) are	•
	a) sp^3 and sp^3	b) sp^2 and sp^3	c) sp^3 and sp^2	d) sp^2 and sp^2
586	. Al-Bronze contains Al and	l:		
	a) Zn	b) Sb	c) Cu	d) Ni
587	. Which one of the following			
	a) CaO	b) SiO ₂	c) Na ₂ CO ₃	d) SO ₂
588.	. In the electrolytic method order to	of obtaining aluminium fr	om purified bauxite, cryolit	te is added to the charge in
	a) Minimise the heat loss	due to radiation		
	b) Protect aluminium prod	• •		
		ender it conductor of electr	icity	
	d) Lower the melting poin	nt of bauxite		
589	CO_2 is not used in :			
	a) Making Na ₂ CO ₃	b) Fire extinguishers	c) Making aerated water	d) Disinfecting water

590. Boron when heated wit	:h carbon forms		
a) B ₄ C	b) BC ₄	c) B_4C_3	d) B_2C_3
591. Activation of charcoal:			
a) Can be achieved only	with charcoal from nut sh	ells	
b) Increases the adsorb	ing power of the charcoal		
c) Is accomplished by g	giving powdered charcoal a	n electrical charge	
d) Is achieved by heating		· ·	
592. Stable compounds in +	-	d by:	
a) B	b) Al	c) Ga	d) Tl
593. Which of the following	is a good conductor of heat	and electricity?	, and the second
a) Diamond	b) Graphite	c) Anthracite	d) Charcoal
594. An aqueous solution of		,	,
a) Weak acid	b) Weak base	c) Neutral	d) Strong base
595. Which element occurs		,	, 0
a) C	b) Si	c) Ge	d) Sn
596. C and Si belong to IV gr	•	•	•
	s 4, whereas that of silicon		
a) Large size of silicon	, , , , , , , , , , , , , , , , , , ,		
b) Availability of vacan	t d-orbitals in silicon		
c) More electropositive			
•	able to attack by nucleophil	ic	
597. Pyrene (a fire extinguis			
a) SiCl ₄	b) CCl ₄	c) GeCl ₄	d) SbCl ₅
598. Which does not exist?	<i>b)</i> ddi ₄	and design	a) bbais
a) B ³⁺	b) Al ³⁺	c) Ga ³⁺	d) In ³⁺
599. The reducing power of		.,	u) III
a) Ge $>$ Sn $>$ Pb	b) Sn > Ge > Pb	c) Pb > Sn > Ge	d) None of these
600. The hardest substance		c) 1 b > 311 > dc	a) None of these
a) Be ₂ C	b) Tritonium	c) B ₄ C	d) Graphite
601. The hybridization of ca	•		uj drapinte
a) sp^3	b) sp^2	c) <i>sp</i>	d) dsp^2
602. Newly shaped glass art	, ·		, ,
	icies when cooled suddellly	become brittle, therefore t	nese are cooled slowly, tills
process is known as:	h) Annaaling	c) Quenching	d) Calvaniaina
a) Tempering	b) Annealing	c) Quencining	d) Galvanising
603. Aluminium carbide rea		a) CU	d) C ₂ H ₆
a) C_2H_2	b) C ₂ H ₄	c) CH ₄	$\mathfrak{a}_{1}\mathfrak{c}_{2}\mathfrak{n}_{6}$
604. The blue coloured mine		emprecious stone is:	
a) Sodium alumino silio	ate		
b) Zinc cobaltate			
c) Prussian blue	-4-		
d) Basic copper carbon		11	
605. The correct order of de			
	> Carborundum > Corund		
	> Carborundum > Corund		
	undum > Borazon > Diamo	ond	
d) None of the above			a 1100
606. It is impossible to fuse		_	of a difference in the
properties of glass and	the metal. The property con	ncerned is:	

a) Coefficient of expansion

b) Melting point					
c) Ignition point	c) Ignition point				
d) Heat of fusion					
607. The catalyst used in Fi	riedel-Craft's reaction is:				
a) Finely divided nick	el				
b) Finely divided plati	num				
c) Anhydrous alumini	um chloride				
d) Pt					
608. The metal used in acid	l storage batteries is :				
a) Copper	b) Tin	c) Magnesium	d) Lead		
609. In Hall's process, the o	•	, 0	,		
a) Coke	b) Calcium carbonate	c) Sodium hydroxide	d) Sodium carbonate		
610. Sesquioxide of lead is:	=	,			
a) PbO	b) PbO ₂	c) Pb ₂ O	d) Pb_2O_3		
611. Tin (IV) chloride (anh	· -	, 2	, 2 3		
a) By action of molter					
	conc. HCl and dehydrating the	e product in an atmosphere	of HCl(g)		
	dil. HCl and heating the prod		(8)		
d) None of the above	B				
612. What product is forme	ed on heating lead nitrate?				
a) $PbO + NO + O_2$	b) $PbO + NO_2 + O_2$	c) $Pb + NO_2$	d) $PbO + N_2$		
	g imparts green colour to flan		a) 1 bo 1 112		
a) $B(OMe)_3$	b) Na(OMe)	c) $Al(OBr_2)_3$	d) Sn(OH) ₂		
- · · · · · · · · · · · · · · · · · · ·	H ₄ , GeH ₄ and SnH ₄ is most vol		u) 511(511)2		
a) CH_4	b) SiH ₄	c) GeH ₄	d) SnH ₄		
615. Destructive distillation		c) dell4	u) 51111 ₄		
a) C_2H_2	b) C_2H_4	c) Carbides	d) Coal gas		
616. Red lead is an example		c) carbiaes	a) coar gas		
a) Basic oxide	b) Super oxide	c) Mixed oxide	d) Amphoteric		
-	g statements about H ₃ BO ₃ is:	•	uj Amphoterie		
a) It is prepared by acidifying an aqueous solution of borax b) It has a layer structure in which planar BO_3 units are joined by hydrogen bonds					
	oton donor but acts as Lewis				
d) It is a strong tribasi		acid by accepting nyuroxy	1 1011		
618. Cassiterite is an ore of					
		a) Maraumi	d) Tin		
a) Iron	b) Lead	c) Mercury	d) Tin		
619. Hoope's process is use		a)	4) C		
a) Al	b) Zn	c) Ag	d) Cu		
620. B_2O_3 is:	13.0) A ' 1'	15. 4. 1		
a) Ionic	b) Basic	c) Acidic	d) Amphoteric		
-	nave as Lewis acid because of		15.7		
a) Acidic nature	b) Covalent nature	c) Electron deficiency	d) Ionization property		
622. Which is pseudo solid			D G GO		
a) Glass	b) Diamond	c) Sodium chloride	d) CaCO ₃		
	623. The number of carbon compounds is very large because it:				
a) Is tetravalent					
b) Forms double and triple bonds					
c) Is non-metal					
d) shows catenation					

624. Which species does not	exist?			
a) [BF ₆] ³⁻	b) [AlF ₆] ³⁻	c) [GaF ⁶] ³⁻	d) [InF ₆] ³⁻	
625. Boron halides behave a	, - 0-	,) [6]	
a) Proton donor	b) Covalent	c) Electron deficient	d) Ionising	
626. Boron differs from the	5		, 0	
a) Has much lesser radi	= =			
b) Is non-metal				
c) Is covalent in its com	pounds			
d) Has maximum covale	_			
627. The purification metho		H ₂ 0 is:		
a) Froth floatation	b) Leaching	c) Liquation	d) Magnetic separation	
628. Anhydrous AlCl ₃ is obta	, ,	•	, , ,	
a) Aluminium and chlor		b) Hydrogen chloride gas	s and Aluminium metal	
c) Both of the above		d) None of the above		
629. Colour is imparted to gl	ass by mixing:			
a) Synthetic dyes	b) Metal oxides	c) Oxides of non-metal	d) Coloured salt	
630. Mineral of aluminium t	nat does not contain oxygen	is:		
a) Corundum	b) Diaspore	c) Bauxite	d) Cryolite	
631. When Al is added to KO	H solution			
a) Hydrogen is evolved		b) Oxygen is evolved		
c) Oxygen is evolved		d) No action takes place		
632. The composition of mic	a is:			
a) NaAlSiO ₄ .3H ₂ O	b) K ₂ O.3Al ₂ O ₃ .6SiO ₂ .2I	$H_2(c)$ K_2 HAl(SiO ₄) ₃	d) NaK. SiO ₄ . 10H ₂ O	
633. Lead chromate isin	colour.			
a) Red	b) Yellow	c) White	d) Black	
634. Pure boron is best prep	ared by			
a) Heating B ₂ O ₃ with H	2 FBII	b) Heating B ₂ O ₃ with Na	and K	
c) Heating KBF ₄ with N	a or K	d) Heating BBr ₃ with H ₂	is presence of a catalyst	
635. The role of fluorspar (C	 -	l quantities in the electroly	tic reduction of alumina	
dissolved in fused cryol	ite (Na ₃ AlF6) is:			
a) As a catalyst				
b) To make the fused m	ixture very conducting			
c) To increase the temp				
•	of oxidation of carbon at the	e anode		
636. Litharge is not common	•			
a) Manufacture of speci	al glasses			
	b) Glazing pottery			
c) Preparing paints				
d) Lead storage battery				
637. The precious Ruby ston				
a) Alumina				
a) Alumina b) Aluminium silicate	e is:			
a) Aluminab) Aluminium silicatec) Sodium aluminium s	e is:			
a) Aluminab) Aluminium silicatec) Sodium aluminium sd) Sodium silicate	e is: ilicate			
a) Aluminab) Aluminium silicatec) Sodium aluminium sd) Sodium silicate638. Wood charcoal is used in	e is: ilicate n gas masks because it:			
 a) Alumina b) Aluminium silicate c) Sodium aluminium s d) Sodium silicate 638. Wood charcoal is used in a) Is poisonous 	e is: ilicate n gas masks because it: b) Liquefies gas	c) Is porous	d) Adsorbs gases	
 a) Alumina b) Aluminium silicate c) Sodium aluminium s d) Sodium silicate 638. Wood charcoal is used in a) Is poisonous 639. CO₂ is obtained by heat 	e is: ilicate n gas masks because it: b) Liquefies gas ing:			
 a) Alumina b) Aluminium silicate c) Sodium aluminium s d) Sodium silicate 638. Wood charcoal is used in a) Is poisonous 	e is: ilicate n gas masks because it: b) Liquefies gas	c) Is porous c) NaHCO ₃	d) Adsorbs gases d) None of these	

- a) Al acts as a reducing agent.
- b) Al does not react with steam even at higher temperature
- c) Al forms a number of alloys with other metals
- d) Al is ionic in all its compounds
- 641. On controlled hydrolysis and condensation, R₃SiCl yields
 - a) $R_3 Si 0 Si R_3$

c) R_3 SiOH

- 642. Semi water gas is mixture of:
 - a) Water gas and producer gas
 - b) Water gas and CO₂
 - c) Producer gas and CO₂
 - d) Producer gas and oil gas
- 643. Borax bead test is not given by:
 - a) An aluminium salt
- b) A cobalt salt
- c) A copper salt
- d) A nickel salt
- 644. In the preparation of amorphous silicon, HF acid is used to remove
 - a) Mg

- b) SiO₂
- c) Si

d) None of these

- 645. Boric acid is not used:
 - a) As an antiseptic
 - b) As a flux in soldering
 - c) In making optical glasses
 - d) In making enamels and pottery glazes
- 646. Which of the following is amphoteric?
 - a) CO_2

b) PbO₂

c) SiO_2

d) GeO_2

- 647. Which of the following cannot liberate H₂ with acids?

b) In

c) Ti

- d) B
- 648. Which of the following compounds are formed when BCl₃ is treated with water?
 - a) $B_2O_3 + HCl$
- b) $B_2H_6 + HCl$
- c) $H_3BO_3 + HCl$
- d) None of these

- 649. Which of the following processes does not involve a catalyst?
 - a) Thermite process
- b) Ostwald process
- c) Contact process
- d) Haber process

- 650. The metal which does not form a polynuclear carbonyl is:
 - a) Sodium
- b) Manganese
- c) Iron

- d) Cobalt
- 651. What is formed when oxalic acid is dehydrated by conc. H₂SO₄?
 - a) $C + CO_2$
- b) CO

c) CO_2

d) $CO + CO_2$

- 652. Tetra ethyl lead is used as:
 - a) Fire extinguisher
- b) Antiknock compound c) Pain killer
- d) Mosquito killer

- 653. Lead is not affected by dilute HCl in cold, because:
 - a) Pb is less electronegative than H
 - b) PbO film is formed which resists chemical attack by acid
 - c) A protective coating of PbCl₂ is formed on Pb surface
 - d) PbO₂ film is always present on Pb surface, which resists chemical attack
- 654. Which of the following statement is correct with respect to the property of elements in the carbon family with an increase in the atomic number? Their

a) Atomic size decreases		b) Stability of +2 oxidation state increases	
c) Metallic character decreases		d) Ionization energy increases	
655. The chemical formula of phosgene or carbonyl chloride is:			
a) PH ₃	b) COCl ₂	c) POCl ₃	d) PCl ₃
656. Carbon in CO_2 is:			
a) sp -hybridized	b) sp^2 -hybridized	c) sp^3 -hybridized	d) dsp^3 -hybridized
657. Ordinary sand (SiO_2) is	attacked by:		
a) conc. HCl	b) conc. HBr	c) hot KOH	d) None of these
658. Which is not a mineral	of aluminium?		
a) Anhydrite	b) Bauxite	c) Corundum	d) Diaspora
659. Graphite is soft solid lu	bricant extremely difficult to	melt. The reason for this	anomalous behaviour is that
graphite.			
a) Has molecules of var	iable molecular masses like j	polymers	
b) Has carbon atoms ar interplate bonds	ranged in large plates of ring	s of strongly bound carbo	on atoms with weak
c) Is a non-crystalline s	ubstance		
d) Is an allotropic form	of diamond		
660. Which does not react w	rith water?		
a) B ₂ S ₃	b) B ₄ C	c) Al ₄ C ₃	d) Al ₂ S ₃
661. Which of the following	is obtained on heating, potas	sium ferrocyanide with H	I ₂ SO ₄ ?
a) CO ₂	b) CO	c) C_2H_2	d) (CN) ₂
662. The metallic character	of the elements of IV A group	or group 14 :	
a) Decreases from top t	o bottom	P	
b) Has no significance			
c) Does not change			
d) Increases from top to	o bottom		
663. When a solution of sodi	um hydroxide is added in ex	cess to the solution of po	tash alum, we obtain:
a) A white precipitate	CIPLUS EDUC	AHON .	
b) Bluish white precipi	cate		
c) A clear solution			
d) A crystalline mass			
664. Which of the following	is better fuel?		
a) Solid	b) Liquid	c) Gaseous	d) Semi solid
665. Flux is used to			
		b) Remove silica undesirable metal oxide	
c) Remove all impuritie		d) Reduce metal oxide	
666. Al dissolves in molten M			
a) Sodium aluminate (N			
b) Sodium meta-alumir			
c) Aluminium hydroxid	e		
d) Alumina			
667. Silicon carbide is used a			
a) Dehydrating agent	b) Abrasive	c) Solvent	d) Catalyst
668. Electrolytic reduction of pure alumina is not possible because:			
a) It is amphoteric			
b) It dissociates on fusi			
c) It melts at very high	temperature		
d) None of the above			
669. The main factor respon	sible for weak acidic nature	ot B—F bonds in BF ₃ is:	

a) Large electronegativi	ty of F		
b) Three centred two el	ectorn bonds in BF ₃		
c) $p\pi - d\pi$ back bondin	g		
d) $p\pi - p\pi$ back bonding	g		
670. The correct order of inc		in CO, CO_2^{2-} and CO_2 is:	
	_	c) $CO_2 < CO_3^{2-} < CO$	d) $CO < CO_2 < CO_2^{2-}$
671. A solution of a salt in wa			
contains:	ator off addition of afface in	angives a winte ppulsonas.	ie in net water the bare
a) Ag ⁺	b) Pb ²⁺	c) H ²⁺	d) Fe ²⁺
672. Thallium shows differer	,	,	u) i c
a) It is a transition meta			
b) Of inert pair effect	' ,		
c) Of its amphoteric cha	racter		
d) Of its high reactivity	iracter		
673. 'Lead Pencil' contains			
a) PbS	b) FeS	c) Graphite	d) Pb
674. Which one is explosive?	•	c) drapinic	uj i b
a) PCl ₅			
b) $Pb(NO_3)_2$			
c) $NH_4NO_3 + Al powde$	or		
d) $C_6H_5NO_2$			
	s formed when aluminium	oxide and carbon is strong	gly heated in dry chlorine gas?
a) Aluminium chloride	3 for med when didminidin	b) Hydrate Aluminium	
c) Anhydrous Aluminiu	ım chloride	d) None of the above	emorrae
676. A salt which gives CO ₂ v		-	on warming is:
a) HCO_3^-	b) CO ₃ ²⁻	c) Oxalate	d) acetate
677. The structure of diborar			aj acctate
a) Four 2c-2e bonds and		b) Two 2c-2e bonds an	d four 3c-2e honds
c) Two 2c-2e bonds and		d) Four 2c-2e bonds an	
678. Elements of group 13 fo			d four 3c-3c bonds
a) M_4O_5	b) <i>MO</i>	c) M_2O_3	d) M_2O_4
679. Quartz watches contain	•	$c_j m_2 c_3$	u) 14204
a) Hands made of quart		b) Silica coating on the	numhers
•	an essential component	d) A coating of quartz of	
680. Alumina on heating with	•		in the outer body
a) $Al + CO$	b) Al + CO_2	c) AlN + CO	d) Al + CO + N_2
681. Carbon reacts with strong		•	ujin i do i iv
a) Carbide	b) Carbonate	c) Hydroxide	d) Oxide
682. Tetrahalides of IV A gro			uj onide
a) Ionic	b) Covalent	c) Polar	d) Coordinate covalent
683. The percentage of carbo	-	c) i olai	aj dooramate covalent
a) White cast iron	b) Grey cast iron	c) Wrought iron	d) Steel
684. Conc. HNO ₃ can be store	•	c) Wroaght from	a) Steel
a) Cu	b) Al	c) Zn	d) Sn
685. Water glass is	b) M	C) ZII	u) 311
a) Glass made of water	b) Sodium silicate	c) Calcium formate	d) Pyrex glass
686. Tendency of catenation	•	cy daterain formate	aj i yi en giass
a) C	b) 0	c) N	d) Si
687. On adding ammonium h	•	,	aj oi
corror adding annihonially in	., 0 001441011 10 1112(0	~ 4/3 (~7/)	

	a) A precipitate is forme	ed which does not dis	solve in excess of ammonium hydi	roxide	
	b) A precipitate is formed which does not dissolve in excess of ammonia solution				
	c) No precipitate is formed				
	d) None of the above				
688.	Borax bead test depend	s on the formation of:	:		
	a) Boron oxide	b) Boron metal	c) Metal metaborates	d) All of these	
689.	Graphite is good conduc	ctor of current but dia	amond is non-conductor because :	•	
	a) Diamond is hard and				
	b) Graphite and diamond have different atomic configuration				
	c) Graphite is composed	d of positively charged	d carbon ions		
			th mobile π -electrons while diam	ond has continuous	
	tetrahedral covalent	structure with no free	e electrons		
690.	When Sn (IV) chloride is	s treated with excess	of conc. HCl, the complex [SnCl ₆] ²	is formed. The oxidation	
	state of Sn in this compl	ex is:			
	a) +6	b) +4	c) -2	d) +2	
691.	•	ubbling through wate	r and bubbles coming in contact w	vith air:	
a) Burns with a luminous flame					
	b) Vortex rings of finely divided silica are formed c) $SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$, reaction occurs				
	d) All of the above	-			
692.	The main component of	glass which gives hea	at resistance to laboratory glasswa	are is	
	a) PbO	b) MgO	c) B ₂ O ₃	d) Al_2O_3	
693.	An element <i>R</i> is in group	p 13. Which is true wi	ith respect of?		
	a) It is a gas at room ten	nperature	41.		
	b) It has an oxidation st	ate of +4	1		
	c) It forms an oxide of the	he type R_2O_3			
	d) It forms a halide of th	ne type RX_2	LICATION		
694.	Bucky ball or buck mins	ter fullerene is:	DUCATION		
	a) An allotrope of carbo	n			
	b) It is referred as C - 60	0			
	c) It has sp^2 -hybridized	l nature and resemble	es with soccer ball		
	d) All of the above				

WEB: WWW.GPLUSEDUCATION.ORG